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Solutions to exercises 

 

Exercise I: Foliar litter fall 

There are several ways to solve the problem and below we give two slightly different 

ones. One is to simply add the amounts collected in each litter trap that is not disturbed, 

which is 13, calculate an average value per litter trap which also is the average litter fall 

per 0.25m2. We obtain a value of 71.08 grams (SD = 18.4), which means 284.32 grams 

per square meter or 2843.2 kg per hectare. 

An alternative is to calculate an average value per sampling using n = 15 in sampling 1, 

and n=14 in samplings 2 and 3. The values we obtain for the separate samplings Nos 1, 2 

and 3 are thus the average values for 0.25m2, and in this case 71.4 grams per trap or 2856 

kg per hectare. An advantage is that in this latter case we use all values:  

  

 

                                                                                                                                Average
1
  

                                                                                                                                                                                 

Litter trap No. 1     2      3     4     5    6    7    8    9    10    11  12   13   14    15 

 

Sampling 1     45   61    42   21    55  59  75  52  48  19   38   43   62   59    44           48.2  

 

Sampling 2     18  15     19     9    11    9  16  14  13    5   22    --    13   14   12           13.6   

 

Sampling 3    10   14     15     8      7    5    7  11  17    2   12    8      5    -     14             9.6 

                      73   90     76   38    73  73  98  77  78   26   72          80         70   71.1 / 71.4 

 
1
 Average value per sampling including intact traps only 
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Exercise II: Comparing foliar litter fall of different tree species 

The way to set up a study with measurements on litter fall like the present one is to 

arrange the stands in blocks. A not uncommon situation is that you may obtain values 

from experiments for which the design is less clear or not well described and the results 

of statistical tests may then become less clear. In the present case the stands were actually 

arranged in a block design with four blocks, each block having one stand of Sitka spruce 

and one stand of Austrian pine. Thus, we have four paired stands, each par consisting of 

the two species.  

This is a typical “comparison problem”, one of the most widely met problems in natural 

sciences. Not surprisingly, a broad range of methods have been developed to compare 

populations (in statistics, the term population has a somewhat different meaning than in 

biology and means simply a group of objects that are studied). Describing them all 

exceeds the scope of this book and  below we give only examples how the problem can 

be approached. 

Solution I. One of the simplest methods that can be used to compare two population, not 

necessarily blocked in pairs, is the Student’s t-test. One can also use the simple analysis 

of variance (ANOVA), which with two groups being compared is equivalent to Student’s 

t-test. This method can be used any time, even if stands were not paired. Remember 

however that without blocking (e.g., with stands randomly distributed over larger area) 

differences that you would detect between species might be actually caused by 

differences in local climate or soil rather then by species-specific characteristics. In each 

case care must be also taken of the assumptions of the method (normal distribution and 

homoscedascity, i.e. constant residual variances across treatments).  

Below we give a printout from such an analysis: 

One-Way ANOVA - II_Litter fall by II_Species 
 

Analysis Summary 

 

Dependent variable: II_Litter fall 

Factor: II_Species 

 

Number of observations: 8 

Number of levels: 2 

 

ANOVA Table for II_Litter fall by II_Species 

 

                            Analysis of Variance 

----------------------------------------------------------------------------- 

Source             Sum of Squares     Df  Mean Square    F-Ratio      P-Value 

----------------------------------------------------------------------------- 

Between groups           568711.0      1     568711.0       7.97       0.0302 

Within groups            428142.0      6      71357.0 

----------------------------------------------------------------------------- 

Total (Corr.)            996853.0      7 

 

Comment: The analysis of variance divides the variance of the variable studied (in this 

case litter fall) into two components: a between-group component and a within-group 

component. The F-ratio is a ratio of the between-group estimate to the within-group 

estimate. The p value indicates the probability of type I error and is called the 
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significance level. In this particular case the significance level is ca. 0.03 meaning that 

the difference observed between the average litter fall values for the two species may 

result from pure chance rather then represent the real difference between the species 

only in 3 cases of 100. In natural and social studies it is commonly accepted that the 

difference is assumed to be true if p is lower or equal to 0.05.   
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Comment: There is a number of methods to calculate confidence intervals around mean 

when comparing populations. In this case we used the so called “Tukey Honestly 

Significant Difference” (HSD) intervals. This method offers a good balance in protection 

against type I and type II errors. 
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Comment: As mentioned in Chapter 9, Box-and-Whisker plot gives very rich information 

about a data set. Here you can see medians (the central vertical lines inside the boxes), 

lower and upper quartiles (the boxes to the left and to the right of the median, 

respectively), means (small crosses inside the boxes) and minima and maxima (whiskers 
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to the left and to the right of the boxes, respectively). The asymmetry of a box around the 

median value also gives some information about data distribution, i.e., if the data 

approximately follow the normal distribution or are, e.g., heavily skewed to the right or 

to the left.  

 

Solution II. Although the method presented above is correct and very general, we did not 

make any use of the fact that the experiment was designed in paired stands. This actually 

may be an important advantage as we know that in each pair the two species grew in 

exactly the same climate and on similar soil. Some of the variance unexplained in 

ANOVA and thus adding to the error, may be explained by the variance between the 

stands which, however, should not affect differences between the species in litter fall. 

Thus, we will use now another comparison method – developed especially to compare 

paired samples: 

Paired Samples - Ap litterfall & Sp litterfall 
 

Analysis Summary 

 

Data variable: Ap litterfall-Sp litterfall 

 

4 values ranging from 449.0 to 627.0 

 

Summary Statistics for Ap litterfall-Sp litterfall 

 

Comment: Note that this time all statistics are calculated not for each species separately 

but for the difference between the species on paired stands. Thus, the hypothesis tested is 

not that mean litter fall of species 1 = mean litter fall of species 2 but that the mean 

difference between the species =0. 
 

Count = 4 

Average = 533.25 

Median = 528.5 

Variance = 6514.92 

Standard deviation = 80.715 

Minimum = 449.0 

Maximum = 627.0 

Range = 178.0 

Stnd. skewness = 0.180395 

Stnd. kurtosis = -1.19441 

 

 

Hypothesis Tests for Ap litterfall-Sp litterfall 

 

Sample mean = 533.25 

Sample median = 528.5 

 

t-test 

------ 

Null hypothesis: mean = 0.0 

Alternative: not equal 

 

Computed t statistic = 13.2132 

P-Value = 0.00093663 

 

Comment: Please note that when we used the information about paired stands, we 

obtained much higher significance level (that is, smaller p value = 0.000937). Thus, with 

exactly the same data as before, by performing the analysis that make use of additional 

information about pairing the stands, we obtained much stronger “confirmation” of the 

hypothesis that the species do differ in amount of litter fall.  
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Exercise III: Foliar litter fall in a climatic transect after climate change  

In the present problem the equation basically gives us the answer. First we calculate the 

new AET value which was 27% higher than the old one or 514 mm. This value is used in 

the relationship above and gives the value of 3148 kg ha-1.  

 



 vi 

Exercise IV: Calculating litter mass loss 

The litter that you originally incubated in the bags was air dried and contained 6.04% 

water. To obtain the real dry mass you need to subtract the 6.04% of water. When you 

have done that you will have a new set of values for litter mass dried at 85°C. Here we 

have organized those values in a new column giving that weight (original litter dry 

weight). To calculate litter mass loss you now simply use the data in columns 2 and 3 and 

obtain the mass loss values in column 4. A comment: when using this method the 

standard error normally is below 1.7 up to ca 60% mass loss. The reason for the higher 

SE value here may be that the litter was incubated in four blocks of which one block 

deviated as regards moisture and the litter decomposed somewhat faster there (last five 

values).  

 

Original weight           Original litter       The same litter after           Mass loss 

                                     dry weight           366 days incubation 

(g per bag)                  (g per bag)            (g per bag)                             (%) 

 

0.613                                   0.576            0.2783                                  51.7 

0.615                                   0.578            0.2605                                  54.9 

0.611                                   0.574            0.2802                                  51.2            

0.611                                   0.574            0.1798                                  68.7 

0.614                                   0.577            0.2733                                  52.6 

0.616                                   0.579            0.2944                                  49.1 

0.615                                   0.578            0.2449                                  57.6 

0.612                                   0.575            0.1880                                  67.3 

0.618                                   0.581            0.2551                                  56.0 

0.614                                   0.577            0.3031                                  47.5 

0.617                                   0.580            0.2049                                  64.7 

0.610                                   0.573            0.1612                                  71.9 

0.618                                   0.581            0.2443                                  58.0 

0.619                                   0.582            0.2533                                  56.5 

0.615                                   0.578            0.3037                                  47.5 

0.613                                   0.576            0.1923                                  66.6 

0.617                                   0.580            0.1650                                  71.5 

0.619                                   0.582            0.1717                                  70.4 

0.613                                   0.576            0.1422                                  75.3 

0.613                                   0.576            0.1098                                  80.9 

                                                                                      Average                 61.0 

                                                                                     Standard dev.          9.8 

                                                                                    Standard error         2.2 
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Exercise V: Calculating annual litter mass loss during decomposition 

As a first step we suggest that you draw a graph showing accumulated mass loss against 

time as shown on Fig. V.I. In the (approximately) first year the mass loss was 27.3%, 

leaving 72.7% as remaining mass. For year 2, which is the period between day 376 and 

day 734, we simply consider the remaining substrate on day 376 and its chemical 

composition as a new starting point. Thus, the amount of substrate is the remaining mass, 

namely 72.7% of the original material that may be regarded as the initial substrate for the 

decomposition in the 2
nd

 year.  

We have noted that many of us prefer not to think in the unit % but rather in an imaginary  

specific amount of litter, so let us say that we initially had samples with 1.0 gram in each. 

With 27.7 % mass loss in the first year the remaining amount was 1.0-0.273 g or 0.727 g. 

After two years’ decomposition the accumulated mass loss was 45.8% and the remaining 

amount thus 0.542 g. The mass loss in the second year is thus the amount of the substrate 

at the beginning of the 2
nd

 year, minus what remained after 2 years (0.727 – 0.542 g). To 

obtain the percentage decomposition we divide by the initial amount at the start of the 2
nd

 

year which gives the fraction. By multiplying by 100 we recalculate the fraction to %.  

The expression thus becomes 100×(0.727 – 0.542)/0.727, giving the mass loss of 25.4% 

of the amount still remaining after 1 year decomposition.  

When we do the same operation for year 3 we obtain the expression  100×(0.542 -

0.412)/0.542 which gives a mass loss of 24.0%. For year 4 the expression is 100×(0.412 -

0.335)/0.412 which gives a mass loss of 18.7%, and for year 5 it is 100×(0.335 – 

0.250)/0.335 or a mass loss of 25.4%. 

We can object about this kind of calculation that some sampling times deviate from a 

year, which of course is a weakness that has been illustrated in the present example. 

However, in an example like the present one the average decomposition per day would be 

ca 0.07% which means that a few days difference are not that important. As the reader 

probably has noted about the data, the mainly three samplings per year are made in early 

summer, in September and in late autumn. With a data set like the present, it is of course 

possible to pick any one-year period. We have chosen one-year periods starting with the 

original incubation date which is not necessary. As the litter chemical composition and in 

part the weather is different among the samplings we may use all possible one-year 

periods without risk of using the same information twice. In the present data set there are 

ca 14 periods encompassing about one year and how many days the chosen periods 

should be allowed to deviate from 365 days can be decided upon for each data set and the 

purpose of the calculation. 
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Figure V.I. Accumulated litter mass loss plotted versus time. Arrows indicate the 

samplings made with ca 1-yr intervals and the dotted horizontal and vertical lines show 

the period and the intervals for accumulated mass loss, respectively, that are used as basic 

units for calculating the annual mass loss.  
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Exercise VI: Describing the accumulated litter mass loss dynamics by functions 

The evident way of solving the problem is to fit the equations described earlier in the 

book, namely the one-compartment exponential function (first-order kinetics model), the 

two-compartment model and the asymptotic model. Below you can see printouts from 

such analyses with some comments to the results obtained. Considering that different 

software packages offer slightly different sets of information, only the most important 

information from the report has been retained.  

Please note that to meet the requirements of the different models fitted, the data were 

used either as given above (accumulated mass loss in per cent, AML) or recalculated to 

remaining mass (100-AML). Also time has been expressed in years rather then in days as 

k values are usually reported per year, and when given per day the values become very 

small and not convenient for reporting.  

 

Nonlinear Regression – alder leaves, one-compartment (Olson’s) model 
 

Dependent variable: 100-AML 

Independent variables: time 

Function to be estimated: 100*exp(k*time) 

 

Estimation Results 

---------------------------------------------------------------------------- 

                                                         Asymptotic 95.0% 

                                      Asymptotic         Confidence Interval 

Parameter               Estimate  Standard Error         Lower         Upper 

---------------------------------------------------------------------------- 

k                      -0.284802       0.0368065     -0.364997     -0.204607 

---------------------------------------------------------------------------- 

 

R-Squared = 1.47508 percent 

R-Squared (adjusted for d.f.) = 1.47508 percent 

 

   The output shows the results of fitting a nonlinear regression 

model to describe the relationship between 100-AML and 1 

independent variable. The equation of the fitted model is 

100*exp(-0.284802*time) 
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Comment: Please note that although the estimated k value is significant (i.e., differs 

significantly from 0 at 95% confidence level as indicated by the estimated 95% 

confidence intervals reported in the table), the fit is actually very poor. The R
2
 is less then 

1.5%, and the fitted line obviously does not describe the decomposition of alder leaves 

well. It can be clearly seen from the plot above that at the early decomposition stage the 

actual decomposition rate is substantially higher then predicted by the model, while at 

the late stage the litter decomposes slower than the model would predict. Thus, we should 

conclude that the Olson’s model, even if significant, is inadequate for describing 

decomposition of grey alder leaves. 
 

 

Nonlinear Regression – lodgepole pine needles, one-compartment 
(Olson’s) model 
 

Dependent variable: 100-AML 

Independent variables: time 

Function to be estimated: 100*exp(k*time) 

 

Estimation Results 

---------------------------------------------------------------------------- 

                                                         Asymptotic 95.0% 

                                      Asymptotic         Confidence Interval 

Parameter               Estimate  Standard Error         Lower         Upper 

---------------------------------------------------------------------------- 

k                      -0.273737      0.00695995     -0.288902     -0.258573 

---------------------------------------------------------------------------- 

 

R-Squared = 98.4866 percent 

R-Squared (adjusted for d.f.) = 98.4866 percent 

 

   The output shows the results of fitting a nonlinear regression 

model to describe the relationship between 100-Lp aml and 1 

independent variables.  The equation of the fitted model is 

 

100*exp(-0.273737*time) 

 

 

Comment: In contrast to grey alder leaves, the decomposition of lodgepole pine needles 

seems to be described well by the Olson’s model. Note that as much 98.5% of the 

variability in mass loss is described by the model. We could thus conclude that lodgepole 

pine needles decompose following the simple, one-compartment model at least within the 
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investigated interval for accumulated mass loss . However, before accepting this 

conclusion we should yet check if the other two models do not explain the decomposition 

of lodgepole pine needles still better.  
 

 

Nonlinear Regression – grey alder leaves, two-compartment model 

Comment: Note that in this model we have two decomposition constants, k1 and k2. We 

also have  two compartments, w1 and w2, which represent two different groups of 

organic matter, namely ‘easy-decomposable’ and ‘resistant’ parts of organic matter 

expressed as percentages in the initial material. 
 

Dependent variable: 100-AML 

Independent variables: time 

Function to be estimated: w1*exp(k1*time)+w2*exp(k2*time) 

Initial parameter estimates: 

   w1 = 20.0 

   k1 = -1.0 

   w2 = 80.0 

   k2 = -0.0001 

 

Estimation Results 

---------------------------------------------------------------------------- 

                                                         Asymptotic 95.0% 

                                      Asymptotic         Confidence Interval 

Parameter               Estimate  Standard Error         Lower         Upper 

---------------------------------------------------------------------------- 

w1                       42.1254         1.73477        38.201       46.0497 

k1                      -4.15049         0.66995      -5.66603      -2.63496 

w2                       57.8601         1.33276       54.8451        60.875 

k2                    -0.0552087      0.00831569    -0.0740201    -0.0363973 

---------------------------------------------------------------------------- 

 

R-Squared = 99.5194 percent 

R-Squared (adjusted for d.f.) = 99.3592 percent 

 

   The output shows the results of fitting a nonlinear regression 

model to describe the relationship between 100-Alder aml and 1 

independent variables.  The equation of the fitted model is 

42.1254*exp(-4.15049*time)+57.8601*exp(-0.0552087*time) 

 

 

Comment: Note how much better the two-compartment model fits the data for grey alder 

leaves, explaining almost 100% of the variability in mass loss. We would conclude now 
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that grey alder leaves apparently contain two very different compartments of organic 

matter: approximately 42% of easily decomposed matter with a k value of -4.2, and ca. 

58% of resistant substrate decomposing at a k value as low as 0.055. The latter k value, 

although low, is still significantly different from 0, indicating that indeed this part of litter 

is not completely resistant to decomposition although it decomposes at a very low rate as 

seen in the figure above. 
 

 

Nonlinear Regression – lodgepole pine needles, two-compartment model  

Comment: As we mentioned before, although the Olson’s model fit well the 

decomposition data for lodgepole litter, we will still use the two-compartment model to 

check for possible distinction between resistant and easily-decomposable fractions in this 

litter.  
 

Dependent variable: 100-AML 

Independent variables: time 

Function to be estimated: w1*exp(k1*time)+w2*exp(k2*time) 

Initial parameter estimates: 

   w1 = 80.0 

   k1 = -1.0 

   w2 = 20.0 

   k2 = -0.0001 

 

Estimation Results 

---------------------------------------------------------------------------- 

                                                         Asymptotic 95.0% 

                                      Asymptotic         Confidence Interval 

Parameter               Estimate  Standard Error         Lower         Upper 

---------------------------------------------------------------------------- 

w1                       102.398          16.257       65.6223       139.174 

k1                     -0.303766        0.129616     -0.596979    -0.0105539 

w2                      0.768211          17.432      -38.6659       40.2023 

k2                      0.383385         4.13055      -8.96058       9.72736 

---------------------------------------------------------------------------- 

 

R-Squared = 98.7407 percent 

R-Squared (adjusted for d.f.) = 98.321 percent 

 

   The output shows the results of fitting a nonlinear regression 

model to describe the relationship between 100-Lp aml and 1 

independent variables.  The equation of the fitted model is 

102.398*exp(-0.303766*time)+0.768211*exp(0.383385*time) 
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Comment: The two-compartment model also seems to fit the data for lodgepole pine 

needles pretty well with R
2

adj = 98.3% which is only marginally lower than R
2
 obtained 

with the Olson’s model. To solve the question whether there is one or two compartments 

in lodgepole needle litter look closely at the results table. You will notice there that the 

estimate for the first compartment is 102% and does not differ significantly from 100% 

and that both parameters describing the second compartment, k1 and w2, are not 

significant (i.e., their 95% confidence intervals cover 0). Thus, we may reject the 

hypothesis that the lodgepole pine needle litter consists of two compartments with 

different decomposition rates. 
 
 

Nonlinear Regression – alder leaves, asymptotic model 

Comment: Note that in this is a two-parameter model: besides the k value (which is not 

equivalent to the k values from Olson’s and two-compartment models as described 

earlier in the book) also the asymptote m is estimated. 

Dependent variable: AML 

Independent variables: time 

Function to be estimated: m*(1-exp((k*tyrs)/m)) 

Initial parameter estimates: 

   m = 60.0 

   k = -100.0 

 

Estimation Results 

---------------------------------------------------------------------------- 

                                                         Asymptotic 95.0% 

                                      Asymptotic         Confidence Interval 

Parameter               Estimate  Standard Error         Lower         Upper 

---------------------------------------------------------------------------- 

m                        50.6259        0.786011       48.8959       52.3559 

k                       -122.466         11.4297      -147.623      -97.3095 

---------------------------------------------------------------------------- 

 

R-Squared = 97.7356 percent 

R-Squared (adjusted for d.f.) = 97.5298 percent 

 

   The output shows the results of fitting a nonlinear regression 

model to describe the relationship between Alder aml and 1 independent 

variables.  The equation of the fitted model is 
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50.6259*(1-exp((-122.466*time)/50.6259)) 

 

 

Comment: The asymptotic model fits well the decomposition dynamics of the grey alder 

leaves with both estimated parameters, k and m, significant. Thus, we cannot reject the 

hypothesis that the decomposition of alder leaves stops after ca 2.5 years of 

decomposition. This undecomposable fraction has been estimated to 50.6%. Notice 

however that the R
2

adj value is lower in this model than in two-compartment one (97.5% 

vs. 99.4%). Thus, although both regressions are significant, the two-compartment model 

gives a better fit and explains the decomposition dynamics better. 
 

 

Nonlinear Regression – lodgepole pine needles, asymptotic model  

Dependent variable: AML 

Independent variables: time 

Function to be estimated: m*(1-exp((k*time)/m)) 

Initial parameter estimates: 

   m = 80.0 

   k = -10.0 

 

Estimation Results 

---------------------------------------------------------------------------- 

                                                         Asymptotic 95.0% 

                                      Asymptotic         Confidence Interval 

Parameter               Estimate  Standard Error         Lower         Upper 

---------------------------------------------------------------------------- 

m                      5.10074E8       2.88789E8    -1.25548E8      1.1457E9 

k                       -18.4271        0.633325      -19.8211      -17.0332 

---------------------------------------------------------------------------- 

 

R-Squared = 94.1361 percent 

R-Squared (adjusted for d.f.) = 93.603 percent 

 

   The output shows the results of fitting a nonlinear regression 

model to describe the relationship between Lp aml and 1 independent 

variables.  The equation of the fitted model is 

5.10074E8*(1-exp((-18.4271*time)/5.10074E8)) 
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Comment: Although the asymptotic model explains as much as 93.6% of the variability 

in the decomposition dynamics of the lodgepole pine needles, the asymptote m is 

apparently not significant. Thus, we may reject the hypothesis that the lodgepole needles 

do not decompose completely. 

Final conclusion:  

After analyzing the three different models of litter decomposition for the grey  alder 

leaves and the lodgepole pine needles, we may conclude that the two litter types differ 

substantially in their decomposition patterns and rates. The lodgepole pine needles 

follow the simple, one-compartment (Olson’s) decay model  described by one 

decomposition constant k with the asymptote giving 0% remaining material (that is, 

asymptotically 100% decomposition). In contrast, the grey alder leaf litter consists of two 

markedly different fractions, one being easily decomposable and comprising ca 42% of 

the organic matter, and the other decomposing very slowly and forming the remaining 

58% of the matter, which alternatively may be called “undecomposable”.  
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Exercise VII: Regulating factors for decomposition rates 

One way of determining the decomposition rate is to use the mass loss over a certain 

period, e.g., one year. We discussed in the Exercise V how to do this and that we may 

consider the remaining litter as a new substrate with a new chemical composition at the 

start of each such one-year period. In the present exercise we use the same data set as in 

exercise VI but have already calculated the one-year mass loss values and listed them in 

the table below. In principle we can take any period that covers 365 days, but since we 

want to determine the substrate quality factors that influence litter mass loss rate, we 

want to avoid the influence of climate and we do that by selecting and comparing periods 

for which the climate (or weather) is constant for all five litter types. 

So after some calculation you will have a new data base with 25 numbers: 

Litter type                           Yearly mass loss 

                        yr 1         yr2          yr 3            yr 4        

  

Ih                    26.5         29.4        22.8           19.0 

N0                  32.7          27.4        22.1           18.0 

N1                  31.3          26.6        19.3           20.4   

N2                  32.2          27.9        17.3           26.7 

N3                  36.3          26.3        15.7           18.2 

In that way, we may find which factors determine the decomposition rate during the 

consecutive years of decomposition and, thus, how they change in the course of 

decomposition.  

Let us start with the first year to see what regulated the mass-loss rate in that period. We 

obtained R = 0.99 for P, 0.76 for N and R = 0.03 for lignin (n=5). Of these relationships 

only that to P is significant at p<0.05.  

We continue with year 2. For N we obtain R = -0.580, for P, R becomes = -0.762 and for 

lignin R  is = -0.815. Of these relationships the best one is that to lignin although not 

quite significant at p<0.1. 

For year 3 we obtain: for N an R value of -0.926, for P an R value of -0.898, and for 

lignin an R value of -0.917.  

For year 4 we obtain for N an R value of 0.663, for P an R value of -0.000 and for lignin 

an R value of 0.338. None was significant at p<0.1.  

An overview of the R-values gives us the following table: 

 

 N P Lignin 

Year 1  +0.76 +0.99  +0.03 

Year 2  -0.580  -0.762 -0.815 

Year 3  -0.926 -0.898  -0.917 

Year 4  0.663  -0.000 0.338 
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The R values in the table may be interpreted as follows: 

In the first year the concentration of P has a significant and stimulating effect on the 

decomposition process. Although no really significant effect of  N is seen, the high R 

value gives a certain support to the hypothesis that there is a stimulating effect of the 

main nutrients in the first year of decomposition. We have seen (chapter 4) that the 

components that are decomposed in the first year for Scots pine needles are mainly water 

solubles and hemicelluloses and according to basic physiology their degradation should 

be stimulated by higher levels of the main nutrients. It also appears that there is no effect 

of lignin. According to the existing information lignin should be degraded slowly, at least 

in the presence of N of the levels found in foliar litter. 

 

In the second year the relationships to N and P are negative, suggesting a suppressing 

effect of the two main nutrients on decomposition. The concentrations of both of these 

nutrients increase during the decomposition process so had there been a stimulating effect 

of one of them or of both that should have been seen not only as positive R values but 

also as a generally higher rate in the second year. The mass loss data for year 2 show that 

the most N-and P-poor litter has the highest mass loss and the litter being the most 

nutrient rich has the lowest rate. We may look at the relationship to lignin, which is 

negative. Although not really significant we may say that p<0.1 suggests some effect. 

Lignin has been suggested as a compound that is resistant to decomposition and we can 

see, e.g. in chapter 4, that its degradation starts late and that its concentration increases as 

decomposition of the whole litter proceeds, or expressed in another way – lignin  has a 

slower decomposition than other litter components. A reasonable conclusion is that there 

is a suppressing effect of lignin on the decomposition rate. Thus, in the second year there 

may be a change in factors that regulate litter mass loss rate.  Judging from the R values 

lignin concentration may have a strong negative influence. We have seen in chapter 4 that 

litter N concentration may have a suppressing effect on lignin degradation rate but the R 

value is rather low to allow us to suggest such an effect. See also figure VI. 

In the third year  the negative effect of  lignin is statistically significant as is a negative 

relationship to N. The negative relationship to P may not necessarily be interpreted 

biologically as there is no known such suppressing effect of P on, e.g., lignin degradation. 

The high R value may simply be due to the fact that the concentrations of N and P both 

increase with accumulated  mass loss. These relationships support what we found for year 

2. See also figure VI. 

The R values for the fourth year do not give any clear picture of regulating factors and 

we cannot exclude that lignin concentration as a regulating factor has been replaced by 

another one. See also figure VI. 

Years 2 and 3 combined. We may combine the values for, e.g., years 2 and 3 and 

investigate a relationship with n=10. We can see that the negative relationship between 

annual mass loss and lignin concentration was improved (Fig. VI). A combination of N 

and lignin in a multiple regression did not add any further explanation (R2 = 0.866 for 

lignin and R
2
 = 0.868 for lignin and N). We should be aware that we now used two 

different years and that a difference in climate between years may influence the result.  
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A general conclusion of this investigation is that we may see an early stage illustrated by 

the mass loss in year 1. In years 2 and 3 the mass losses appear regulated by lignin 

degradation which may constitute another (later) stage. Finally in the last year it appears 

that the regulating effect of lignin disappears. Still we can only observe this, and 

understand that a next stage appears but in this investigation we do not have any 

regulating factor.  

 

Figure VII.I. Linear relationships between concentration of lignin and annual mass loss. 

Full lines give mass losses for the single years 2, 3 and 4 and the dashed line gives the 

regression for years 2 and 3 combined.  
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Exercise VIII: Nitrogen dynamics – concentrations and amounts 

Solution I. To plot N concentration versus time is relatively simple as all information is 

already there. To plot the changes in absolute amount you need to calculate the values for 

absolute amount. By absolute amount we mean of course the remaining amount as related 

to the initial amount. For example, in the initial litter 1.0 g contains 4.8 mg N. After 

15.6 % decomposition 0.844 grams remain with a concentration of 5.1 mg/g. By 

multiplying 0.844 by 5.1 we obtain the remaining amount of N, which is 4.3 mg. A key 

question to do this is to ask “The given N concentration is the concentration in what 

amount of litter?” The obvious answer is in the remaining amount of the litter. Doing 

these calculations we obtain the data set below. As some of us find it easier to imagine 

remaining amounts of a certain given original mass we have chosen to use the unit 1.0 

grams as an imaginary initial amount. 

Table VIII.II.  

 

Time 

(days) 

litter mass loss 

(%) 

remaining amount 

of litter 

(g) 

N concentration 

(mg/g) 

N abs. 

amount 

(mg) 

0 0  1.000 4.8 4.8 

204 15.6  0.844 5.1 4.3 

286 22.4  0.776 5.4 4.2 

358 29.9  0.701 5.4 3.8 

567 38.5  0.615 8.3 5.1 

665 45.6  0.544 9.2 5.0 

728 47.5  0.525 8.8 4.6 

931 54.1  0.459 9.8 4.5 

1021 58.4  0.416 11.1 4.6 

1077 62.5  0.375 11.5 4.3 

1302 66.0  0.340 12.2 4.1 

1393 67.4  0.326 12.5 4.1 

 

With this data set we may plot the data. As we may see (Fig. VII.I) the concentration 

increases as far as the litter decomposition process was followed. We can also see that for 

this litter type there are just small fluctuations in amount, and at the end of the 

measurements most of the N is still bound to the litter structure. 
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Fig. VIII.I. Plot of the dynamics in N concentration and N amounts in decomposing litter.  

 

Solution II. If we need to test formally whether the concentration or amount changes 

significantly with time (that is, can we really say that the concentration or amount indeed 

increases/decreases or the changes can be considered a random variance) we have to 

perform a little more complicated task, namely the regression analysis. In this particular 

case the increase in concentration seems approximately linear for the time span used in 

the investigation so we will apply the linear regression. As in earlier exercises, you will 

find below a printout form a statistical program with some comments.  
Simple Regression - VIII_N conc vs. VIII_time 
 

Regression Analysis - Linear model: Y = a + b*X 

----------------------------------------------------------------------------- 

Dependent variable: VIII_N conc 

Independent variable: VIII_time 

----------------------------------------------------------------------------- 

                               Standard          T 

Parameter       Estimate         Error       Statistic        P-Value 

----------------------------------------------------------------------------- 

Intercept        4.15835        0.34294        12.1256         0.0000 

Slope         0.00635253    0.000413599        15.3592         0.0000 

----------------------------------------------------------------------------- 

 

 

                           Analysis of Variance 

----------------------------------------------------------------------------- 

Source             Sum of Squares     Df  Mean Square    F-Ratio      P-Value 

----------------------------------------------------------------------------- 

Model                     88.1268      1      88.1268     235.90       0.0000 

Residual                  3.73571     10     0.373571 

----------------------------------------------------------------------------- 

Total (Corr.)             91.8625     11 

 

Correlation Coefficient = 0.979456 

R-squared = 95.9334 percent 
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R-squared (adjusted for d.f.) = 95.5267 percent 

 

   The output shows the results of fitting a linear model to describe 

the relationship between VIII_N conc and VIII_time.  The equation of 

the fitted model is 

 

   VIII_N conc = 4.15835 + 0.00635253*VIII_time 

 

Since the P-value in the ANOVA table is less than 0.01, there is a 

statistically significant relationship between VIII_N conc and 

VIII_time at the 99% confidence level. 

 

 

Comment: As could be expected from the simple X-Y plot (Fig. VIII.I), the relationship 

between time and N concentration appeared highly significant. The relationship itself can 

be seen below as a plot of the fitted model, including the original data points as well as 

95% confidence limits (inner bounds) and 95% prediction limits (outer bounds). The 

latter indicate the area around the regression line where 95% of real observations should 

fall. Before we are satisfied with the regression, we should check whether we have 

selected a proper model. It may happen that although the model is significant, it is not 

really a good model for a particular data set. For example, a linear regression would be 

significant when used to describe the relationship between litter mass loss and time, but it 

is certainly not a good model as the relationship is non linear. Whether the model is 

proper can be checked simply by looking at the “observed vs. predicted” plot (below). If 

the model fits the data set well, then the points should be randomly distributed around the 

1:1 line. Any clear deviation from this random distribution (e.g., points drop down off the 

1:1 line at the upper end) suggests that we should look for a better model. In this 

particular case there are no indications of bad fit of the model so we may accept the idea 

that N concentration increases approximately linearly in the litter studied throughout the 

whole incubation time. There is also a more formal test for the goodness of fit, but it 

requires that the data are replicated at least at some points. Thus, form that point of view 

it would be better to use the original data points rather then averages.  

Plot of Fitted Model
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Simple Regression – VIII_N amount vs. VIII_time 
 

Regression Analysis - Linear model: Y = a + b*X 

----------------------------------------------------------------------------- 

Dependent variable: VIII_N amount 

Independent variable: VIII_time 

----------------------------------------------------------------------------- 

                               Standard          T 

Parameter       Estimate         Error       Statistic        P-Value 

----------------------------------------------------------------------------- 

Intercept        4.57906       0.224298        20.4151         0.0000 

Slope       -0.000181518    0.000270513      -0.671015         0.5174 

----------------------------------------------------------------------------- 

 

 

                           Analysis of Variance 

----------------------------------------------------------------------------- 

Source             Sum of Squares     Df  Mean Square    F-Ratio      P-Value 

----------------------------------------------------------------------------- 

Model                   0.0719537      1    0.0719537       0.45       0.5174 

Residual                  1.59805     10     0.159805 

----------------------------------------------------------------------------- 

Total (Corr.)                1.67     11 

 

Correlation Coefficient = -0.207572 

R-squared = 4.30861 percent 

 Comment: As you can see from the ANOVA table, the regression is highly 

nonsignificant. Thus, there is no point in showing the regression plot. The 

nonsignificance of a regression means that the slope coefficient does not differ from zero. 

In this particular case, it means that the N amount was approximately constant during 

the 1400 days of incubation (there was no net release or accumulation of nitrogen). This 

also explains the increase in concentration during the decomposition because as much as 

67% of organic matter has been mineralized.  
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Exercise IX: Increase rate in litter N concentration  

Refer to the discussion in chapter 5 about N concentration increase rate (NCIR). We use 

the linearity in the relationship between the accumulated litter mass loss and N 

concentration. The use of this linear relationship may be a tool for your own use and for 

your own study. What this measure gives is the increase relative to the mass loss and time 

is ignored. See also Fig. IX.I. 

We obtain a highly significant linear relationship:  

N concentration = 3.219 + 0.1289×Acc. ml. 

The standard error for the intercept is 0.839 and for  the slope 0.0117.  

 

Fig. IX.I. The linear relationship between accumulated mass loss and litter N 

concentration.   
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Exercise X: Differences in nitrogen increase rates. 

This is a typical regression analysis problem where two or more regression lines are to be 

compared. As described earlier in the book, the solution to this problem is a regression 

with ‘dummy’ (or indicator) variables. Many statistical packages offer either directly an 

options of comparing regression lines or automatic creation of dummy variables. If this is 

not the case, one can still easily perform the analysis by adding a dummy variable 

himself. In our example, the analysis requires to add just one column consisting of zeros 

and ones so that the data appear as follows: 

Table X.II. Accumulated mass loss and N concentration in two decomposing litter types 

with an additionally created dummy variable necessary to compare two calculated 

regressions.  

 

Mass loss (%) N (mg g
-1

) litter type dummy variable 

  0.0 15.1 green 1 

23.3 19.0 green 1 

28.8 20.8 green 1 

38 23.8 green 1 

44.9 27.3 green 1 

48.8 30.4 green 1 

52.1 30.8 green 1 

54.2 30.7 green 1 

58 31.7 green 1 

60.5 29.5 green 1 

63.4 31.6 green 1 

65.9 31.6 green 1 

0 4.8 brown 0 

15.6 5.1 brown 0 

22.4 5.4 brown 0 

29.9 5.4 brown 0 

38.4 8.3 brown 0 

45.6 9.2 brown 0 

47.5 8.8 brown 0 

54.1 9.8 brown 0 

58.4 11.1 brown 0 

62.5 11.5 brown 0 

66 12.2 brown 0 

67.4 12.5 brown 0 

As you can see, the only purpose of the dummy variable (D) is to distinguish between the 

two types of litter. Now we can formulate the full model including the information about 

the litter type: 

N = a1 + b1×MassLoss + a2×D + b2×D×MassLoss 
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Analyze this model closely and you will see that for brown needles the models simplifies 

to 

N = a1 + b1×MassLoss 

because for brown needles D = 0 so both a2×D and b2×D×MassLoss become also 0. 

Thus, the regression coefficients for brown needles are a1 and b1. However, for green 

needles D = 1 so a2×D and b2×D×MassLoss become meaningful (non-zero). If, e.g., the 

slope of the regressions for brown and green needles are the same then almost all of the 

variability will be explained by the first part of the model (N = a1 + b1×MassLoss) 

anyway and adding the term b2×D×MassLoss will not change the fit significantly – the 

b2 term will be nonsignificant. Turning that reasoning around, if regression analysis 

results in significant b2, it means that the regressions do differ significantly in their 

slopes. By analogy, the significance of the a2 term means significant difference in 

intercepts. Now let us have a look at the computer printout from such an analysis: 

Comparison of Regression Lines - X_N versus X_AML by X_type 
 

Dependent variable: X_N 

Independent variable: X_AML 

Level codes: X_type 

 

Comment: The variable names stand for: X_N – N concentration; X_AML – 

accumulated mass loss; X_type – litter type (this variable is automatically recoded to 

dummy variable). 
 

Number of complete cases: 24 

Number of regression lines: 2 

 

Multiple Regression Analysis 

-------------------------------------------------------------------------------- 

                                          Standard          T 

Parameter                  Estimate         Error       Statistic        P-Value 

-------------------------------------------------------------------------------- 

CONSTANT                    3.21945       0.830358        3.87718         0.0009 

X_AML                      0.128922      0.0176394        7.30877         0.0000 

X_type=green                10.7991        1.26185        8.55816         0.0000 

X_AML*X_type=green         0.157521      0.0263551        5.97686         0.0000 

-------------------------------------------------------------------------------- 

 

                           Analysis of Variance 

----------------------------------------------------------------------------- 

Source             Sum of Squares     Df  Mean Square    F-Ratio      P-Value 

----------------------------------------------------------------------------- 

Model                      2408.4      3      802.799     505.58       0.0000 

Residual                  31.7574     20      1.58787 

----------------------------------------------------------------------------- 

Total (Corr.)             2440.15     23 

 

R-Squared = 98.6985 percent 

R-Squared (adjusted for d.f.) = 98.5033 percent 

 

The output shows the results of fitting a linear regression model 

to describe the relationship between X_N, X_AML and X_type.  The 

equation of the fitted model is 

 

   X_N = 3.21945 + 0.128922*X_AML 

      + 10.7991*(X_type=green) 

      + 0.157521*X_AML*(X_type=green) 

 

where the terms similar to X_type=green are indicator variables which 

take the value 1 if true and 0 if false.  This corresponds to 2 
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separate lines, one for each value of X_type.  For example, when 

X_type=brown, the model reduces to  

 

   X_N = 3.21945 + 0.128922*X_AML 

 

When X_type=green, the model reduces to  

 

   X_N = 14.0185 + 0.286443*X_AML 

 

  Because the P-value in the ANOVA table is less than 0.01, there is a 

statistically significant relationship between the variables at the 

99% confidence level. 

 

Comment: As you can see, the regression is highly significant (cf. Analysis of Variance 

table) as are all the variables (Multiple Regression Analysis table). The latter table 

suggests also that both the intercepts and the slopes do differ significantly. However, we 

will still perform the formal test by checking the significance of the all variables (below) 

in the order they are fitted. The plot below shows the two regression lines fitted and, 

indeed, the two litter types appear quite different both in their initial N concentrations 

and in N increase rates.  X_typebrowngreenPlot of Fitted Model
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Further ANOVA for Variables in the Order Fitted 

----------------------------------------------------------------------------- 

Source             Sum of Squares     Df  Mean Square    F-Ratio      P-Value 

----------------------------------------------------------------------------- 

X_AML                     483.181      1      483.181     304.29       0.0000 

Intercepts                1868.49      1      1868.49    1176.73       0.0000 

Slopes                    56.7232      1      56.7232      35.72       0.0000 

----------------------------------------------------------------------------- 

Model                      2408.4      3 

 

 

   This table allows you to test the statistical significance of the 

terms in the model.  Because the P-value for the slopes is less than 

0.01, there are statistically significant differences among the slopes 

for the various values of X_type at the 99% confidence level. Because 

the P-value for the intercepts is less than 0.01, there are 

statistically significant differences among the intercepts for the 

various values of X_type at the 99% confidence level.   
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Comment: The analysis is finished and now we can tell that: (1) in both litter types N 

concentration increases significantly with litter mass loss (model significant as indicated 

in the ANOVA table); (2) the litters differ in their initial N concentrations (significant 

difference in intercepts); (3) the litters differ in N concentration increase rates 

(significant difference in slopes); (4) the linear model fits the data well (no major trends 

in the “observed vs. predicted” plot). 
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Exercise XI: Calculating the sequestered fraction of litter N 

The basic information necessary to solve this problem is given in chapters 4 and 5. The 

recalcitrant part of the litter we find as the remains when the litter has decomposed to the 

limit value. So a first step would be to calculate the limit value and we obtained 88.5%. 

Please note that the estimated asymptote may vary slightly depending on the estimation 

procedure used. Here we used the Marquardt procedure (see the printout below).  

In a next step we calculate the concentration of N at the limit value as described in 

chapter 5. We obtain the equation N = 0.1289×(mass loss) + 3.218.  

We substitute mass loss for 88.5 as the limit value also is a value for accumulated mass 

loss and obtain an N concentration of 14.6 mg g-1. That is the N concentration in the 

remaining amount which is 11% of the original amount.  

If we imagine an initial amount of 1.0 gram with N concentration of 4.8 mg g
-1

 this 

means that in 1 gram there was 4.8 mg. The same amount has now decomposed and only 

11% remain which means 0.11 grams which have an N concentration of 14.6 mg g
-1

. 

Thus 0.11×14.6 mg g
-1

, or 1.61 mg, which is the amount of N that remains in the litter. 

The fraction that remains is thus 1.61/4.8 or 0.335 which also can be written as 33.5% of 

the N initially present. 

Step 1 – estimating the decomposition limit value (the asymptote) 

Nonlinear Regression - XI_AML 
 

Dependent variable: XI_AML 

Independent variables: XI_years 

Function to be estimated: m*(1-exp((k*XI_years)/m)) 

Initial parameter estimates: 

   m = 100.0 

   k = -10.0 

 

Estimation method: Marquardt 

Estimation stopped due to convergence of residual sum of squares. 

Number of iterations: 9 

Number of function calls: 35 

 

Estimation Results 

---------------------------------------------------------------------------- 

                                                         Asymptotic 95.0% 

                                      Asymptotic         Confidence Interval 

Parameter               Estimate  Standard Error         Lower         Upper 

---------------------------------------------------------------------------- 

m                        88.5262         3.67862       80.3297       96.7227 

k                       -34.1105         1.08391      -36.5256      -31.6953 

---------------------------------------------------------------------------- 

 

Analysis of Variance 

----------------------------------------------------- 

Source             Sum of Squares     Df  Mean Square     

----------------------------------------------------- 

Model                     26581.7      2      13290.8 

Residual                  17.7024     10      1.77024 

----------------------------------------------------- 

Total                     26599.4     12 

Total (Corr.)              5102.5     11 

 

R-Squared = 99.6531 percent 
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R-Squared (adjusted for d.f.) = 99.6184 percent 

 

   The output shows the results of fitting a nonlinear regression 

model to describe the relationship between XI_AML and 1 independent 

variables. The equation of the fitted model is 

 

88.5262*(1-exp((-34.1105*XI_years)/88.5262)) 

 

Plot of Fitted Model
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Exercise XII: Nitrogen stored in litter at the limit value 

In the presentation of the problem you obtained the information about the limit values 

and thus about how much recalcitrant remains there are from each litter species. You also 

know the N concentration in these remains. We can apply here the same method as we 

used in exercise XI.  

Our table (XII.II) thus has obtained two further columns, one giving Ncapac  as mg of N 

that is stored in the remains of originally 1.0 grams of litter. This is simply the amount of 

N given in milligrams per gram litter.   

The last column gives the fraction as the remaining N/initial N, for example 0.68/4.0. By 

multiplying by 100 we obtain the percentage of N remaining, in the given example 17%.  

As a final step – why not plot the calculated data in the two last columns, e.g. versus 

initial N concentration. What is your conclusion? 

Table XII.II. The same data as in Table XII.I supplemented with two columns giving the 

calculated capacities of litters to store N (Ncapac) and the percentage of initial N 

sequestered.  

 

Litter type Initial N 

conc. 

(mg g
-1

) 

Limit 

value 

(%) 

N conc. at 

limit value 

(mg g
-1

) 

Ncapac 

 

(mg g
-1

) 

Sequestered 

part of the N 

(%) 

Lodgepole pine 4.0 94.9 13.6 0.68 17 

Scots pine 4.2 81.3 12.76 2.39 57 

Scots pine 4.8 89.0 14.7 1.62 34 

Norway spruce 5.44 74.1 14.46 3.74 69 

Silver birch 9.55 77.7 22.71 7.34 77 

Common beech 11.9 59.1 24.05 9.84 83 

Silver fir 12.85 51.5 21.93 10.86 85 
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Figure XII.I. Sequestered N in litter that has decomposed to the limit value. The amount 

of N stored in different litter species is related to the initial litter concentration.  
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