
Short Guide to the Most Essential R Functions

In the table below: LOGICAL – logical test, such as is.na(data) or data==1; ACTION – an executable

expression, such as data<-3 or lm(y~x) or 2+4; BODY – set of expressions; path – access path to a file;

[requires NAME] – installation of the NAME package is reuired; FORMULA – formula object; MODEL –

model object; NAME – any custom NAME. Anu numbers indexing lists of commands in the first column are

only for reference and should not be used with commands provided.

Function and arguments Description and details

Operators and basic operations

!x, x|y, x&y, xor(x,y) NOT x, x OR y, x AND y, logical exclusive OR on
x, y

Comment line – not executed

+, -, *, /, %%, %/%, %*%, ^ add, subtract, multiply, divide, modulo, integer
division, matrix product, power

==, >, <, >=, <=, != Equal, smaller than, larger than, smaller or
equal, larger or equal, not equal

A -> B Assignemnt – B gets the value of A

abs(NAME) Absilute value

cor(NAME1,NAME2) Correlation of elemenets of two objects

cov(NAME1,NAME2) Covariance of elements of two objects

exp(NAME) Exponent (e
NAME

)

Inf, NA, NaN Infinity, missing value, not-a-number variable

install.packages(“NAME”) Install a package “NAME”

is.na(NAME) Logical test if NAME is a missing value

library(NAME) Load a library NAME

list.files() List all files in the current working directory

log(NAME) Logarithm of NAME

ls() Display all object in the workspace

mean(NAME) Mean of elements of name

median(NAME) Median of elements of name

prod(NAME) Product of elements of NAME

quantile(NAME) Quantiles (median, minimum, maximum, 25%
and 75% quantile)

round(x, digits=n) Round x to n digits

save(file=”NAME”) Save workspace to file

savehistory(file=”NAME”) Save history of commands to file

sd(NAME) Standard deviation of elements of NAME

search() Display the namespace and all loaded
packages and attached objects

setwd(path) Set working directory to path

sqrt(NAME) Square-root of NAME

sum(NAME) Sum of elements of NAME

T or TRUE, F or FALSE Logical variable – true or false

var(NAME) Variance of elements of NAME

Vector and matrix functions; data-type functions

as.vector(X), as.list(X),

as.matrix(X),

as.data.frame(X), as.array(X),

as.numeric(X),

as.character(X), as.logical(X)

as.factor(X)

Treat X as the type specified without changing
its type

c(a,b,c,d,...) Concatenate obejcts to a vector

class(), attributes() Check class and attributes of an object

cumprod(VECTOR) Cumulatiove product of elements of VECTOR

cumsum(VECTOR) Cumulative sum of elements of VECTOR

det(MATRIX) Determinant of MATRIX

dim(ARRAY) Returns lengths of dimensions of ARRAY (may
also be matrix and data-frame)

eigen(MATRIX) Eigenvalue of MATRIX

fix(NAME) Opens window for manual edition of the table
NAME

is.vector(), is.list, etc. Logical test if object is of type specified

length(VECTOR) Number of elements in a VECTOR

max(NAME) Maximum value of NAME

min(NAME) Minimum value in NAME

names(NAME) Names of the elements of the vector or
variables of the data-frame – you can assign
new values

order(VECTOR) Returns permutation of elements that – when
applied as and index – sorts elements of
VECTOR ascending

paste(VECTOR, sep=”.”) Paste elements of VECTOR as a text string
using sep as separators (may also be “”)

range(VECTOR) The range of values

rank(VECTOR) Ranks of values

rev() Reverses a function, eg. Rev(sort(x)) sorts x
descending

rownames(NAME), colnames(NAME) Returns names of columnsand rows of
thematrix or data-frame; may also be used for
assigning names

sort(VECTOR) Sorts elements ascending

summary(NAME) Generic function, returns type-specific
summary

t(MATRIX) Transpose a matrix

which(VECTOR, LOGICAL) Indexes of elements satysying the condition
LOGICAL

Reading data; manipulating tables

$ e.g. data$name Accesses the variable using its name (in data-
frames)

[] e.g. data[2,3] Accesses column, row or element; in >2D
objects dimensions are specified in the order:
rows, columns, …; omitting one dimension but
retaining commas means that we want the
whole dimension extracted

apply(matrix, 1 or 2, FUNCTION) Applies FUNCTION to rows (1) or columns (2)
of matrix

1. attach(NAME), detach(NAME)

2. detach(package:NAME)
1. Attaches or detaches an object
2. Detaches package NAME

boxcox(NAME) [requires MASS] Box-Cox transformation of the
data

cbind(x,y) Column-wise bind of two objects (numbers of
rowns must be the same)

na.omit(NAME) Returns object with NAs removed; in data-
frame whole rows in at least one NA are
removed

rbind(x,y) Row-wise bind two objects; numbers of
coulmns are the same

read.csv(file=path) Read CSV (comma-separated) file

read.delim2() Read file with commans as decimal separators;
arguments as in read.table()

read.table(path, header=T,

sep=”\t”, skip=N)
Read file in path, header=T sets the first line as
names of variables, sep sets the character
separating columns, skip skips N first columns

subset(NAME, LOGICAL) Extract from data-frame NAME cases satisfying
LOGICAL condition, eg. subset(data, sex==”M”)

table(group1, group2) Create contingency table counting cases in
grouping variables (one or two)

tapply(data, group, FUNCTION) Apply function to data group-wise

with(NAME, procedures) Alternative for attach; procedures use data
from NAME without the need of specifying
variable names by $

write.table(data, file=path,

sep=”\t”)
Save data to disc using filename path and sep
as column separator

Writing new functions

break Break lood and go outside to the next
operation

F <- function(ARGUMENTS) {BODY} Define function F, taking several ARGUMENTS
(names, comma separated), executing some
expressions using these arguments in BODY

for (i in X) {ACTIONS}

for (i in X) ACTION
Loop – iterate through elements of X (may be
vector or range), for each execute ACTIONS or
single ACTION

1. if (LOGICAL) {ACTIONS}

2. if (LOGICAL) {ACTIONS}

 else {ACTIONS}

3. ifelse (LOGICAL,

 ACTIONS1, ACTIONS2)

1. Execute ACTIONS if LOGICAL is TRUE
2. See above, if FALSE execute else
3. Execute ACTIONS1 if LOGICAL is TRUE,
execute ACTIONS2 otherwise

next Stop iteration and go to the next one (does
not break the entire loop)

repeat {ACTION if (LOGICAL) break} Execute ACTION as long as LOGICAL remains
false

while (LOGICAL) {ACTIONS} Execute ACTIONS as long as LOGICAL remains
TRUE

Generating random data

rep(A, length.out=B, times=C,

each=D)
Repeat A C times, or as many times as
necessary to fill length.out; if each defined –
each element of A (if it’s a vector) will be
repeated D times; e.g.
rep(c(1,2),times=2,each=4) yields
1111222211112222

rnorm(N, mean, sd), pnorm(X, mean,

sd), qnorm(P, mean, sd), dnorm(X,

mean, sd)

Use normal distribution with parameters mean
and sd to: generate N random samples (r); get
probability x<=X (p); get quantile X for P(x<=X)
(q); get the density function for X (d); see help
for more arguments, e.g. log=T yields log
transformed values

OTHER DISTRIBUTIONS

[add r, q, p or d; first argument

may be P, X or N]:

t(., df), f(., df1, df2), binom(.,

size, probab),

pois(., lambda),

gamma(., shape, scale), chisq(.,

df),

nbinom(., size, probab, mu),

lnorm(., meanlog, sdlog), hyper(.,

m, n, k),

geom(., probab),

multinom(., size, prob), logis(.,

location, scale), exp(., rate),

cauchy(., location, scale), unif(.,

a, b)

t distribution, F, binomial, Poisson, gamma,
Chi-squared, negative binomial, lognormal,
hypergeometric, geometric, multinomial,
logistic, exponential, Cauchy, uniform. See
respective help files for more details and
arguments.

rTraitCont(tree, model, sigma,

alpha)
Simulate evolution along the tree phylogeny,
using selected evolution model, sigma as
standard deviation for random process at each
branching and alpha as slelective force acting
along the tree

rtree() Generate random tree; see help for more
details

sample(A, B, replace=T or F) Choose random sample of size B from vector
A, if replace TRUE each element will may be
sampled more tha once; executing with
replace=F and B>length(A) yields error

1. seq(A, B, by=C)

2. seq(A, B, length.out=C)

1. Generate numbers between A and B with
increment of by
2. Generate sequence between A and B of the
final length of length.out
If A>B the sequence is generated in
descending order

unique(A) Extract all unique values from A

Hypothesis testing
Most testing functions accept the following arguments: alternative=”two-sided” or “less” or
“greater” (one or two-tailed test); conf.level=0.95 specifying significance threshold.
binom.test(n_succ, n_trials, P) Binomial test for population with P successes

chisq.test(x,y) or chisq.test(A) Accepts two vectors or a matrix (contingency
table)

cor.test(x,y,method) Correlation test; available methods: spearman,
kendall, pearson

fischer.test() Exact Fisher test, takes two vectors or one
matrix

kruskal.test() Kruskal-Wallis test; takes one list with groups
as subvectors, two vectors – one with data nad
one with group ids or formula object

ks.test() Takes two vectors with data or one vector and
the name of distribution to test (e.g.
ks.test(x,pnorm)

prop.test() Propotion test

qqnorm(), qqline() Give quantile-quantile plot testing for
normality and adds a line to it

shapiro.test() Shapiro-Wilk test for normality, takes one
vector of data

t.test(A,B,var.equal=T or F,

paired=T or F)
t-test, takes two vectors of formula object

TukeyHSD() Tukey Honest Significant Difference; takes
anova or lm model object

var.test() Takes two vectors and compares variances
using F-test

wilcox.test(A,B,paired=T or F)

Wilcoxon signed-rank test – takes two vectors

power.t.test(delta=A, sd=B,

power=C,

n=D, sig.level=E, alternative=F)

Power calculation. Specify all parameters but
one and it will be estimated based on the
remaning ones. See help for detailed
description of arguments.

Bootstrapping

a <- numeric(N)

for (i in 1:N) {

a[i] <- STATISTIC using

sample(data,replace=T) }

hist(a)

quantile(a, c(0.025, 0.975))

Sample bootstrapping with N randomizations
using sample function; STATISTIC is the
expression calculating the value of test
statistic; hist generates histogram of
bootstrapped samples; quantile allow for
hypothesis testing

FUNCTION <- function(A,i)

STAT(A[i])

BOOT <- boot(data, FUNCTION, N)

[requires boot] First, the FUNCTION is defined
– it calculates the test statistic. Then it is
bootstrapped.

boot.ci(BOOT) Confidence intervals from bootstrapping.

Linear models

FORMULA

1. y ~ x

2. x + y

3. x:y

4. x*y

5. x – y

6. x/y

7. 1

8. (x + y + z)^2

9. poly(x, 2, raw=T) or

 x+ I(x^2)

10. s(x)

11. lo(x)

1. Simple formula, with independent (x) and
dependent (y) variable
2. + defines additional variables
3. colon forms interaction
4. * fits interaction and all main effects
5. – removes a term
6. Slash defines nesting, from higher to lower
level
7. One represents intercept
8. Fits all two factor interactions of x, y, z and
main effects
9. Fits quadratic term of x
10. Uses smoother to fit x (in GAM)
11. Uses LOESS (local regression) to fit x (in
GAM)

lm(FORMULA, data=NAME, weights=A) Linear model for data, weights optional

predict(MODEL, newdata) Prediction from model; if newdata specified
(as additional data-frame) prdictions for new
values are made

resid(MODEL) Residuals from model

update(MODEL, ~. –A) Update model’s formula

summary(MODEL) Summary of model

plot(MODEL) Diagnostic plots

anova(MODEL) ANOVA table for model (if supported)

anova(MODEL1, MODEL2) Compare two models using ANOVA

gam(FORMULA, data) [requires mgcv] Additive linear models

tree(FORMULA, data) [requires tree] Tree regression models

plot(TREEMODEL), text(TREEMODEL)(Plots tree regression and adds text labels

step(MODEL) Stepwise simplification of MODEL based on
AIC

contrasts(DATA$FACTOR) Displays contrasts for factor variable

contrasts(DATA$FACTOR) <- metrix of

contrasts
Sets contrasts for factor variable

summary.lm(MODEL) Regression-like summary of a model

summary.aov(MODEL) ANOVA-like summary of a model

glm(FORMULA, data=NAME,

family=distribution name)
Generalized linear model with distribution
defined by family; possible values: gaussian,
poisson, binomial, exponential, gamma,
quasibinomial, quasipoisson.

MCMCglmm(

Fits generalized linear mixed models using
Markov Chain Monte Carlo method

y ~ fixed effects OR

cbind(y, z) ~ trait + fixed

effects,

Fixed effects formula; cbind() used if more
than two response variables; trait is a
restricted name indexing response variables in
multivariate models

random=~a + b OR

random=~idh(fixed):a + us(fixed):b

OR

random=~idh(trait):a + us(trait):b,

Random effects formula; idh used for
covariance structures with covariances set to
zero; us used for (co)variance structures with
covariances not fixed; in random effects –
animal used for additive genetic/phylogenetic
effect in animal models; be sure to create
proper structure in multivariate models (hence
the ‘trait’ effect)

rcov=~idh(fixed):units, Optional, defines residual (co)variance
structure

data=NAME, Name of the data object

pedigree=NAME, Optional, name of the pedigree
datafile/phylogenetic tree from ape()

mev=NAME, Optional, in meta-analysis defines vector of
measurements error

family=NAMES OR

family=c(NAME,NAME),
Defines the type of distribution; c() used when
more than one response; not necessary if
gaussian

prior=NAME, Defines the name of the prior

saveX=T or F, saveZ=T or F, Saves (if T) design matrices for fixed and
random effects

pr =T or F, pl=T or F) Saves (if T) random effects (BLUPs) and latent
variables (fitted values on link scale)

my_prior <-

list(R=list(V=1,nu=0.002),

B=list(mu=0, V=1e+06),

G=list(G1=list(V=1,nu=0.002),

G2=list(V=1,fix1),

G3=list(V=1,nu=0.002,alpha.mu=0,

alpha.V=1000)))

Prior for MCMCglmm; R – priors for residual
variance; G – priors for random effects (as
many as there are random terms); B – priors
for fixed effects (if more than one:
mu=c(0,0,0), V=diag(3)*1e+06); B is optional
and required only in difficult models (such as
binary data with large separation; see relevant
chapters)

fitted(MODEL) Returns values fitted by model (equal to
predict() with no newdata argument)

lmer(

y ~ x + y + (1|a) + (fixed|b),

family=distribution name,

data=NAME)

Fits (generalized) linear mixed models using
REML; random effects formed by (X|...)

mcmcsamp(MODEL from lmer) [requires arm] Uses lmer object to create
MCMC samples for estimated parameters

Graphics and plots

plot(x,y OR y~x OR object,

Generic function for creating plots; takes two
vectors (x and y variables), a formula object or
a (model) object.

main, Graph title

xlab, x axis label

ylab, y axis label

xlim, Limits for x axis in the form of c(A,B)

ylim, Limits for y axis

cex.axis, Font size for axes’ ticks in points

cex.lab, Font size for axes’ labels in points

cex.main, Font size for graph’s label

cex, Size of graph’s points

pch, Type of points (see points() function)

lty, Line type for line plots (see lines())

lwd) Line width in pixels

abline(a=X,b=Y)

abline(h=A)

abline(v=B)

abline(lm model)

Adds line to a plot, by defining slope and
intercept (a,b), horizontal line for Y=A, vertical
line for X=B or line from a lm object

boxplot(Y~X) Creates boxplot fro data given group(X)-wise

hist(X, freq=T or F, breaks=N) Histogram (with frequencies if freq=T), with
custom number of bars (breaks)

identify(x,y) Identifies points on the graph

legend(x,y,legend) Adds a legend to the graph

library(lattice) and library(gplot) Two libraries for high-level specialized graphs
(see manuals and help files)

lines(x,y,lty=N) Adds lines to a plot. Types of lines (lty):
lty=1 solid line
lty=2 dashed line
lty=3 dotted line
lty=4 dash-and-dot line
lty=5 broken line
lty=6 broken-and-dot line

locator(x) Identifies points on the graph

par(Sets graphical parameters (see figure below)

font, 1-standard, 2-italic, 3-bold, 4-bold italic, 5-

mar, mai, Width of margins in Inches or lines, as four-

element vectors
mfrow, Sets number of columns and rows on the plot

oma, omi, Widths of outer margins in Inches or lines, as
four-element vectors

din, fin, pin) Length and width of the image (in Inches or
lines) as two-element vectors

mfg Position of active figure in device with multiple
figures

persp(x,y,z) 3D plot, with x and y independent variables
and one dependent variable z

png(file=path) PLOTTING dev.off()

jpeg(file=path) PLOTTING dev.off()

pdf(file=path) PLOTTING dev.off()

Using devices for saving graphs to graphic files;
can also be done using Save As menu in the R
Console (Windows/Mac OS)

points(x, pch=N) Adds points to the graph. Type of pints (pch):

rainbow(N), heat.colors(N),

terrain.colors(N), cm.colors(N)
Generates color vectors of size = N

din[1]

d
in

[2

]

mai[1

]

m
ai

[2

]

fi
n

[2

]

fin[1]

mai[3

]

m
ai

[4

]

mfrow=c(1,2

)

omi[1

]

o
m

i[
2

]

omi[3

]
o

m
i[

4

]

pin[1]

p
in

[2

]

