

Szymon M. Drobniak

Introduction to R
Materials from the R workshop in the
Institute of Environmental Sciences,
Jagiellonian Univeristy

Kraków 2011

2

Prepared in the Group of Population Ecology

Institute of Environmental Sciences

Jagiellonian University, Kraków

This publication is financially supported by

the FRISC project (Factors of Population

Extinction Risk)

Project number GOL PL 0419

Cover project: Szymon Drobniak

© Copyright by Szymon Drobniak, 2011

© Copyright by ART-TEKST

Technical processing:

ART-TEKST

Publisher and editor:

ART-TEKST – dr inż. Mariusz Sierpień

ISBN 978-83-7783-004-8

3

Table of contents

Table of contents .. 3

Preface .. 8

Acknowledgments ... 8

Technical note ... 9

Part 1 ~ Getting started .. 12

Notation .. 12

Downloading and installing R.. 14

Using R. The R console. The workspace .. 15

Functions ... 19

Part 2 ~ Data structures .. 22

Vectors .. 22

Other vector functions .. 25

Generic functions .. 26

Other data structures in R ... 27

Class-control functions.. 33

Data-frames .. 33

NaN or Not-A-Number .. 37

Attach() and with() – a digression ... 38

Data input ... 39

Manipulating tables .. 40

Part 3 ~ Graphics and plotting .. 42

Graphical devices .. 42

Working with standard graphics ... 45

4

Low-level functions ... 49

Graphical states and parameters .. 51

Positioning plots .. 52

GGPLOTS ... 53

Part 4 ~ Hypothesis testing. Simple tests .. 59

Distributions .. 59

Data diagnostics .. 60

Some popular tests ... 63

Power calculation .. 68

Bootstrapping ... 69

Part 5 ~ Statistical modeling ... 73

The outline .. 73

Simple linear models ... 74

Going multiple – basic tools for models with more than one x 80

Robust regression ... 86

ANOVA and the use of contrasts .. 86

Generalized Linear Models ... 89

Overview of modelling generic functions and attributes 95

Part 6 ~ GLMM .. 97

Overview ... 97

Simple mixed model and why it should be mixed? .. 98

Animal model .. 106

Correlations in non-gaussian data .. 113

Part 7 ~ (Very brief) introduction to multivariate methods 118

Principal Component Analysis .. 118

Factor analysis ... 122

5

Cluster analysis ... 124

Hierarchical clustering .. 130

Note .. 134

Part A ~ Likelihood and Bayesian statistics ... 135

Seeing the invisible – likelihoods and posteriors .. 135

Combining likelihood and prior knowledge .. 139

Let’s go nasty – improper priors ... 144

Part B ~ More on Markov Chain methods .. 146

MCMCglmm and lmer – which to choose? ... 146

MCMC diagnostics .. 146

More on overdispersion – Poisson data ... 148

Overdispersion and random effects ... 151

Binary/categorical data ... 157

Closer look at categorical random interaction ... 168

Priors for complex covariance structures ... 171

Part C ~ Extending linear mixed models ... 173

Brief introduction to phylogenies in R .. 173

Comparative analysis – simple simulated case ... 178

Meta-analysis .. 181

Random regression ... 186

Part D ~ Advanced applications of MCMCglmm ... 197

Parameter expanded priors .. 197

Zero-inflated models (ZIP) and zero-altered (ZAP) models 199

Short Guide to the Most Essential R Functions .. 206

References .. 218

Index.. 220

6

7

8

Preface

In recent years biological and ecological applications of statistics reached a new level,

both in the sense of sophistication of used techniques and of the theoretical

knowledge of biologists. Software providers compete to improve their products and

provide biologists with the most recent and advanced solutions. In spite of this fierce

competition – there is just a handful of software packages worth consideration at the

moment: SAS, SPSS, ASReml, S-PLUS. And last but not least – R. They’re all good, with

their drawbacks and advantages – and they all have fans all over the world. However

one simple factor – price – divides them into two major groups: R and everything else.

If you will decide to work with R you’ll see that there are more division points – and

that the choice of R is more than obvious. I hope that this volume will be of use to all

that want to start their adventure with R and that they will discover its diverse

applications and beautiful simplicity.

What should not be expected from this book? First of all – it’s not a handbook.

If you are looking for a complete description of all R’s features and utilities you should

use more specific literature, such as excellent Crawley’s “The R Book”. Even with

regard to subjects covered here, this book is far from being a step-by-step guide

through the R’s environment. It is rather a record of two workshops on R that were

held in the Institute of Environmental Sciences of the Jagiellonian University (the basic

part) and in the Evolutionary Biology Centre of the Uppsala University (the advanced

part). That is also the reason for which it’s written in English – both workshops were

attended by people of different nationalities. One can think of it as a cook-book

providing the necessary procedures with some statistical commentary, but without

unnecessary details. Also, because of the limited space, only some issues were

covered, bearing in mind the needs and requirements of most ecologists that begin

their adventure with R.

I hope you will find this book useful, no matter if you’re just starting with R or

have already done something remarkable with it. I am also aware that mistakes and

errors are inevitable, even in the best written handbook. If you come across any

inconsistencies and errors – please let me know so that I could update the on-line

erratum. All suggestions about the scope and usefulness of this text are also welcome!

Acknowledgments

I would like to thank all that helped to complete this text. Special thanks to all that

attended my workshops – your questions were always stimulating and helped to

9

improve this book. I’m also thankful to Jarrod Hadfield who let me adapt some parts of

his “Course Notes [onMCMCglmm]” in this text and to Michael Crawley who let me

modify some of the datasets from his “The R Book”. I also adapted several datasets

available on the Internet for the purposes of this book – you’ll find the list of relevant

web-pages in the References section.

 This publication was supported by the FRISC project, supported by the

Financial Mechanism of the European Economic Area (you’ll find more about FRISC

here: http://www.eko.uj.edu.pl/frisc).

Technical note

In order to be able to follow exercises from this book, you will need the necessary files

(data sets etc.) Everything that’s required, together with the PDF version of the book,

can be downloaded from the following website:

http://www.eko.uj.edu.pl/drobniak/r.htm. Additionally, you can also download

complete code for the Advanced part in the form of R-script files. Currently (March

2011) it is not available for the Basic part, but it will become available as soon as the

coding into the R-script files has been completed.

http://www.eko.uj.edu.pl/frisc
http://www.eko.uj.edu.pl/drobniak/r.htm

10

Basic Issues
Szymon Drobniak

11

12

Part 1 ~ Getting started

During this course you will learn how to use one of the most versatile and powerful

statistical packages currently available – the R. The course will cover basics of R,

essentials of its syntax and the most important mathematical and statistical functions.

You will also learn how to create elegant graphs to illustrate your analyses. More

advanced statistical issues will also be covered, including generalized linear and

mixed models, multivariate statistics, phylogenetic analyses and they can be coupled

with linear modeling. Finally, there will also be a short introduction to quantitative

genetic analysis and other, more specific uses of statistics.

 As R was derived from a well-established language S, it allows not only for

statistical calculations. You could also use it as a mathematical modeling language, just

in the same way as you would do with Matlab. Compared to Matlab, ASREML or S – R

has one great advantage: it’s completely free and open-source. It means that you don’t

have to pay for using it, you don’t even have to pay for scientific or commercial use of

results obtained using R. Open source also means that anyone can access the source

code of R or any R’s package. Thank to this there’s a great chance that someone

already had the same problems you may have and looked through the source code –

or wrote new package from a scratch – to solve this problem. In other words – usually

you won’t have to laboriously invent your own way through your analyses; you’ll just

need to find the right package among thousands of available, ready to use packages

available through the CRAN website. So, let’s begin!

Notation

Throughout this book I will be using standard notation for all code blocks. While

working with R, one have to remember about several simple rules:

 lower and upper-case letters are distinguished so function has different

meaning than FunCTioN;

 there are no restricted keywords in R – but there are several names that are

recommended to be used only in their default, built-in meaning; for good

reasons avoid using the following words for your user-defined names: mean,

sd, fix, random, units, residuals, animal, data, vector, factor,

list, for, if, else, function, var; you’ll see some of them (eg. data)

used later together with some additional letters, but never alone;

13

 when you do a lot of analyses in R it’s easy to get lost among dozens of objects

and names – try inventing your own strategy of naming things in R and follow

it strictly; it will spare you many stressful disappointments;

 Within the block codes I will use some additional formatting to make reading

the code easier; names of the functions will be in bold, arguments’ names

within functions will be underlined, and everything else will be in non-

bold, non-italic font; outputs presented within block codes are in

italics and using smaller font; I will use Courier as the font for block

codes – it will prevent some tabular outputs from being incorrectly displayed

 In R you can break lines to everything without the need for scrolling the

window horizontally; in block codes, most code is broken into lines that fit the

width of the printed page, but of course you can use your own line-breaking

or nit use it at all;

 R displays so called prompt: > at the beginning of every line; it’s also present

in code blocks but remember to remove it (and also the broken line prompt:

+) if you want to copy-and-paste code lines directly from the PDF version of

this book;

 quotation marks denote text variables in R; you can use either single or

double quotation marks interchangeably, just remember not to mix them;

 sometimes I use the # sign inside the block code to provide additional

comments; lines beginning with the hash sign are not executed and you

should obviously omit them executing the code, but most often they provide

important notes on the code and should be read as integral parts of the text;

for ease of reading I use shaded background in comments.

R can be used in all most popular operating systems. As it is Unix-derived it is

recommended to be used in Linux systems. Currently one of UNIX systems – Debian-

based Ubuntu – is very user friendly and it can be recommended for using with R.

Advantages of using Ubuntu are several: you’re sure that no problems with file

compatibility will occur; importing your data is much more straightforward; as R is

run in basic Linux console – it operates much quicker (in Windows after running some

complex analysis system for several seconds looks like crashed) and you can run 2-3

instances of R simultaneously, which in Windows would cause system crash (provided

you would be able to do this in Windows in the first place!). However, availability of

Windows and it’s general popularity decided that most people use R in Windows,

despite it’s obvious limitations and drawbacks. Here we will also use Windows

environment, but you can easily ‘translate’ all commands and procedures to Linux- or

MacOS-based R installations simply by translating all source paths into system-

specific syntax.

14

R is not very resource-demanding and can be easily run even on older machines

– but beware! The more complex analysis you should try to run, the more memory-

and processor-demanding it would be. Quickly you’ll realize that trying to analyse

thousands of records with multiple responses and dozens of explanatory variables

will be difficult using older PCs. If you plan to use R for elaborate and computer-

intensive applications – make sure your computer is well suited for this (at least 2 GHz

processor and 1 GB of RAM). Otherwise it will be a rather disappointing experience...

Downloading and installing R

The software can be downloaded from the CRAN (The Comprehensive R Archive

Network) webpage: http://cran.R-project.org. The package is downloaded as an

ordinary binary file (.exe) that can be executed directly; it automatically installs R on

your computer. In UNIX based systems you need to follow the usual way you use to

install any other software; e.g. in Ubuntu you have to use Package Manager to find R in

the repository and then install it on your system. After installation R is available for

running as any other program.

 Basic distribution of R contains the most essential and widely used packages

(e.g. basic tests, procedures for mathematical calculations, graphing algorithms,

generalized linear modelling tools). If you’d like to expand functionality of R (and

most likely you will eventually have to do this) – you have to use once again the CRAN

service – it contains most of available packages, together with their documentations,

manuals, etc. Installing them in your R distribution is easy. Let’s assume you’d like to

have the ape package (used for creating and handling phylogenetic data):

> install.package(“ape”)

After that this package is installed, but still not loaded. To use it just type

> library(“ape”) #you can omit quoting marks here

Now this package is loaded and ready to use. Loading external (non-standard)

packages has to be done every time you start up R. To check which packages are

loaded, just use

> search()

[1] ".GlobalEnv" "package:stats" "package:graphics"

[4] "package:grDevices" "package:utils" "package:datasets"

[7] "package:methods" "Autoloads" "package:ape"

 How can we know what package we need? Well, first of all – ask others. It’s

very likely that someone already had similar problem as you and found out how to

solve it. Secondly, try using www.rseek.org – it’s a google based search engine

15

designed specifically for R users. If you already have a package or function and just

want to know what it does – just use R’s help commands:

> help(seq)

> ?seq

 If you’re not sure what you’re looking for – use global help search. R will

search everything it has on the local machine and return most useful results. Here

we’re looking for any idea how to do Spearman correlation test. R suggests the

cor.test package, which turns out to be of use:

> ??spearman

> ?cor.test

Using R. The R console. The workspace

When you run R, you’ll see white console with some information at the top (such as

current version, some basic info how to get help in R, how to cite your use of R, etc.)

Under this you’ll see the command prompt:

>

It marks the place where you can enter your commands. E.g., if we enter:

> (3+4)*12

we’ll get

[1] 84

In other words, R works as command-line software and you cannot use menus and

other Windows-like graphic-user-interface features to operate it. You simply write the

command, hit Enter – and you get your result (or error message if something is

wrong). R is also an interpreted language – you simply write your commands one by

one and execute them in real time; it’s in clear opposition to compilator-based

programming languages (such as C or Java) where you have to write the whole

program, and then compile it to make it usable.

 It is also essential to realize, that in R everything has its place in the

computer’s memory (just like in any other programming language). You can name

these memory places and assign values to them:

> y <- (3+4)*12

Now, the place called y is a variable, that contains the value of our arithmetical

operation. The operator ‘<-‘ assigns the value on the right-hand side to the variable

16

on the left-hand side (however, you can use the reverse version). You can call this

value by typing the name of the variable:

> y

[1] 84

There are several rules for effective use of R environment:

 When you want to provide a name (e.g. package name, file name, anything

that is not a variable or factor name) – always do this by using quotation

marks (“ ”or ‘‘). Single apostrophes are ‘stronger’ – double ones should be

nested inside single ones if necessary. Always remember to close quotes once

opened, and don’t mix different types of quotation marks.

 If you want to find any previously executed command – just use up and down

arrows on your keyboard; it allows you to browse through executed

commands; if you’d like to stop browsing just hit Esc – it will clear the

prompt. Browsing through previous commands is especially useful when you

enter a wrong command; correcting it requires just hitting ‘up’ (it returns last

entered command), then you can just correct any spelling errors and hit Enter

once again.

 The Tab key can be used to fill any started command, provided R knows the

name or command (i.e. the name exists in its environment or required

package has bee loaded). Try typing ‘cita’ and hitting Tab – R should

complete command: ‘citation’; you can than end the command by using

brackets. This function returns the proper way of citing R in papers.

> cita #hit Tab

> citation

> citation()

To cite R in publications use:

 R Development Core Team (2009). R: A language and environment for

statistical computing. R Foundation for Statistical

 Computing, Vienna, Austria. ISBN 3-900051-07-0, URL http://www.R-

project.org.

A BibTeX entry for LaTeX users is

 @Manual{,

 title = {R: A Language and Environment for Statistical Computing},

 author = {{R Development Core Team}},

 organization = {R Foundation for Statistical Computing},

17

 address = {Vienna, Austria},

 year = {2009},

 note = {{ISBN} 3-900051-07-0},

 url = {http://www.R-project.org},

 }

We have invested a lot of time and effort in creating R, please cite it when

using it for data analysis. See also

‘citation("pkgname")’ for citing R packages.

 If you reach end of the line and don’t want the window space to ‘shift’

following your typing you can break the line by using Enter: just hit Enter

after unfinished line (suggesting that something should be added, e.g. further

parts of operation, closing brackets, etc.) Broken line is continued below, after

leading ‘+’ (instead of ‘>’; remember that this plus sign does not imply any

sum!)

> 2+3+4+5*7/9-

+ 2

[1] 10.88889

 Two or more commands can be executed at once – just enter one after

another, separating them by semicolons:

> 4-7; 76/33; "Hellow World"; log(1000)

[1] -3

[1] 2.303030

[1] "Hellow World"

[1] 6.907755

 Any spaces are ignored – you can type as many as you want; in general you

should use spaces to make your code easier to read – quickly you’ll realize it

pays off! Also, for clarity try to use informative names.

> ff34<-c(3,4,5,3,4,6,3,5,3,5,6,3)

> seomd<-sd(ff34)/sqrt(12)

> data <- c(3,4,5,3,4,6,3,5,3,5,6,3)

> std.error <- sd(data)/sqrt(12) #isn’t that clearer?

Everything you type or create during the R session is contained in so called

workspace, a virtual place in the memory of your machine. Once you close R this

18

workspace disappears along with everything you’ve created. To prevent this from

happening you might want to save the workspace. In fact, it is a good habit to save the

workspace for any particular analysis and load it again later when you go on with you

calculations. To save the workspace you’ll need to have your working directory, which

is a folder on your computer that will contain any saved workspaces. Setting a

working directory is simple: first, just create new empty directory on your disk drive

(it’s better to do this somewhere on top of directory tree to shorten the source path

for it).Then type:

> setwd("D:/workingdir")

> getwd()

[1] "D:/workingdir"

First command sets your working directory (you may choose any valid name for it),

second one returns its address. Now, any time you quit R (by typing q()) – you’ll be

asked if you want to save your workspace. By clicking Yes, you’ll create two files in

your working directory: .RData and .Rhistory. The first one contains any objects

you’ve created (e.g. y), the second one – all commands executed. After restarting R it

will resume last saved workspace. Should you want to restore any other custom

workspace just navigate to the proper working directory (using setwd(...)) and use

below commands to restore objects, commands or both:

> load(file=”.Rdata”)

> loadhistory(file=”.Rhistory”)

If you want, you can remove any object from your current workspace. Just type:

> rm(y)

> y

Error: object 'y' not found

If you don’t remember all the names you’ve created – just use the ls() function. It

displays all objects in the current workspace (UNIX users should know see that R

comes from UNIX). For times of despair you have the following code:

> rm(list=ls())

but be careful as there will be no warning and all your objects will be irreversibly

deleted.

19

 Finally, you don’t have to wait until the end of your R session to save your

workspace. You can use the save(file=”.Rdata”) and savehistory(file=

”.Rhistory”) functions – they will save objects and commands in the current

working directory, using the names you provide.

Functions

Everything you use in R to manipulate objects is a function. It means, that everything

has this form: function.name(arguments): { actions }. In other words, you’ll

always find a name you can use to call a function. After being called, this function takes

arguments you provide, doeas something with them (actions) and returns the result.

E.g. you’ve already seen the function c(). It takes as many values (arguments) as you

provide and concatenates them creating a vector:

> myvector <- c(1,2,3,4,5,6,7,8)

> myvector

[1] 1 2 3 4 5 6 7 8

 Of course, functions may do more sophisticated things. E.g. if you need a

sequence of numbers generated with a specified interval, you should use the seq()

function. Let’s check what it does?

> sample <- seq(1,10,length.out=25)

> sample #sequence of 25 numbers

 [1] 1.000 1.375 1.750 2.125 2.500 2.875 3.250

 [8] 3.625 4.000 4.375 4.750 5.125 5.500 5.875

[15] 6.250 6.625 7.000 7.375 7.750 8.125 8.500

[22] 8.875 9.250 9.625 10.000

If you’d like to use function that does not exist – that’s not a problem! Just write one.

Let it be the method for calculating arithmetic mean; let’s decide its name is mean:

> mean <- function(x) {sum(x)/length(x)}

> mean(sample)

[1] 5.5

 Importantly, when any function is called – anything that happens through this

function, happens not in the R global environment, but within this function. As soon as

functions finishes its work, any objects and variables required are destroyed as they

exist only in the local place, inside this function. In other words – if we had a global

20

object called x it won’t be altered by the fact that our function mean also uses object

called x to assign the data to it; this second object exists only inside this function:

> x <- c(2,2,2)

> add10 <- function(x) { #we define function that adds 10 to a number

+ x <- x + 10

+ x

+ }

> add10(x)

[1] 12 12 12

> x #should remain unaltered

[1] 2 2 2

21

22

Part 2 ~ Data structures

Vectors

Vector is the most basic data structure in R. Simply, vector is a collection of variables,

e.g. numbers, text variable, etc. Creating vectors is achieved by c() function. As you

noticed before, any output in R begins with [1]. This is an index showing the position

of the element within a vector. In general – you can call any particular element of an

vector by giving its index number:

> a <- c('a','b','c','d','e')

> a[3]

[1] "c"

In R there are no scalars – everything is a vector (or a more complex structure);

even single numbers are simply an one-element vectors. The most wonderful thing

about vectors is that they largely eliminate the need for iterated operations as known

in other languages. If we want to apply some function to every element of an vector,

we simply enter this vector as an argument.

> myvector <- seq(1, 10, by=0.76)

> myvector

 [1] 1.00 1.76 2.52 3.28 4.04 4.80 5.56 6.32 7.08 7.84

[11] 8.60 9.36

> sqrt(myvector) #square root

 [1] 1.000000 1.326650 1.587451 1.811077 2.009975

 [6] 2.190890 2.357965 2.513961 2.660827 2.800000

[11] 2.932576 3.059412

> othervector <- c(1,2,3,4)

> myvector + othervector

 [1] 2.00 3.76 5.52 7.28 5.04 6.80 8.56 10.32

 [9] 8.08 9.84 11.60 13.36

Second example (sum of two vectors) shows one important feature of using vectors as

arguments: if in a function one vector has fewer elements than needed – function uses

its elements again from the beginning until it terminates. It’s called vector recycling –

and you should remember it happens, especially when you forget to care about the

length of vectors used as arguments.

23

Vectors can be handled using many built-in functions. Sometimes their

application is quite straightforward and intuitive:

> vector1 <- c(1,2,3,4,5,6,7)

> vector2 <- c(2,2,3,3,4,4,5)

> max(vector1) # maximum value

[1] 7

> min(vector2) # minimum value

[1] 2

> sum(vector1) # sum of elements

[1] 28

> mean(vector1)

[1] 4

> median(vector1)

[1] 4

> var(vector1) # variance

[1] 4.666667

> cor(vector1,vector2) # correlation between two vectors

[1] 0.9707253

> sort(vector1) # sorted version

[1] 1 2 3 4 5 6 7

> rev(sort(vector1)) # reversed-sorted vector

[1] 7 6 5 4 3 2 1

> rank(vector2) # ranks of vector elements

[1] 1.5 1.5 3.5 3.5 5.5 5.5 7.0

> quantile(vector2) # minimum, lower quantile, median,

 # upper q. and max

 0% 25% 50% 75% 100%

 2.0 2.5 3.0 4.0 5.0

> pmax(vector1,vector2) # for every position – maximum value

 # from all supplied vectors

[1] 2 2 3 4 5 6 7

> cumprod(vector1) # for each element – cumulative product

[1] 1 2 6 24 120 720 5040

> length(vector1)

[1] 7

24

 Arithmetic is not the only thing we can do with vectors. We can also apply

logical operations – which will be further very useful while handling and filtering our

own data. We could want to square root only even numbers in our vector. This can be

achieved by the operator of modulo, which either returns an integer part of the

division or the reminder:

> 23%/%6 #integer division

[1] 3

> 23%%6 #reminder

[1] 5

By checking the remainder after diving by 2 we can check if the number is odd

(remainder 1) or even (remainder 0):

> 6%%2 == 0 # even

[1] TRUE

> 7%%2 == 0 # odd

[1] FALSE

Now – let’s square-root even number within the range between 0 and 50:

> samp <- 0:50

> sqrt(samp[samp%%2 == 0])

 [1] 0.000000 1.414214 2.000000 2.449490 2.828427

 [6] 3.162278 3.464102 3.741657 4.000000 4.242641

[11] 4.472136 4.690416 4.898979 5.099020 5.291503

[16] 5.477226 5.656854 5.830952 6.000000 6.164414

[21] 6.324555 6.480741 6.633250 6.782330 6.928203

[26] 7.071068

Now let’s translate. First we generated numbers from 0 to 50. Then we checked which

of them are even by using modulo:

> samp%%2

 [1] 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0

[26] 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1

[51] 0

> samp%%2 == 0

 [1] TRUE FALSE TRUE FALSE TRUE FALSE TRUE FALSE

 [9] TRUE FALSE TRUE FALSE TRUE FALSE TRUE FALSE

[17] TRUE FALSE TRUE FALSE TRUE FALSE TRUE FALSE

[25] TRUE FALSE TRUE FALSE TRUE FALSE TRUE FALSE

[33] TRUE FALSE TRUE FALSE TRUE FALSE TRUE FALSE

[41] TRUE FALSE TRUE FALSE TRUE FALSE TRUE FALSE

25

[49] TRUE FALSE TRUE

Finally we used these logical numbers as indexes to choose only even values (those

returning TRUE in our logical test) and square-rooted them:

> samp[samp%%2 == 0]

 [1] 0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30

[17] 32 34 36 38 40 42 44 46 48 50

> sqrt(samp[samp%%2 == 0])

 [1] 0.000000 1.414214 2.000000 2.449490 2.828427

 [6] 3.162278 3.464102 3.741657 4.000000 4.242641

[11] 4.472136 4.690416 4.898979 5.099020 5.291503

[16] 5.477226 5.656854 5.830952 6.000000 6.164414

[21] 6.324555 6.480741 6.633250 6.782330 6.928203

[26] 7.071068

Sometimes using logical operations may be simpler by generic functions, e.g.:

> which(samp%%2 == 0)

 [1] 1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31

[17] 33 35 37 39 41 43 45 47 49 51

Here we asked simply which elements are even and got the list of indexes for such

elements. Of course, in the above functions we might as well use other logical

operators; the following are available: >, <, ==, <=, >=, != (not equal to), | (logical OR,

returns TRUE if either of expressions is TRUE), & (logical AND, returns TRUE if both

expressions are TRUE).

Other vector functions

There are several useful functions operating on vectors or returning vectors. You’ve

already seen seq():

> seq(10, 30, length.out=8)

[1] 10.00000 12.85714 15.71429 18.57143 21.42857

[6] 24.28571 27.14286 30.00000

Instead of using output length we could specify the interval (argument by) – which

can also be negative (numbers will be in descending order):

26

> seq(30, 10, by=-8)

[1] 30 22 14

The function sample() can be used to shuffle elements of a vector and generate

random samples, either with or without replacement:

> sample(vector1)

[1] 6 5 1 4 3 2 7

> sample(vector1,10)

Error in sample(vector1, 10) :

 cannot take a sample larger than the population when 'replace = FALSE'

> sample(vector1,10,replace = T)

 [1] 2 1 1 5 2 5 6 2 2 2

Another extremely useful function working on vectors is function for looking

for runs of numbers in vectors. Let’s generate a vector of 20 random numbers from

Poisson distribution and look for runs of numbers in it:

> poiss <- rpois(20,0.7)

> poiss

 [1] 0 0 0 1 1 0 0 1 1 1 0 0 0 1 1 2 2 0 1 1

> rle(poiss)

Run Length Encoding

 lengths: int [1:9] 3 2 2 3 3 2 2 1 2

 values : num [1:9] 0 1 0 1 0 1 2 0 1

You can see that the longest runs are of three digits and one of them consists of zeros,

and the second one of ones.

 Finally we can use rep() to generate repeats of numbers of different kinds.

I’ll leave exploring it’s usability to you – try ?rep.

Generic functions

R offers several so-called generic functions. They work with nearly all types of R

objects and return outputs that are specific to handled objects. You can check

respective summary functions, e.g. summary.lmer() is a summary functions designed

for lmer() output objects. However, the simpler way is to just use summary(object)

27

– in such a case the function related to the type of an “object” will be called. The most

important generic functions are as follows: summary(), mode(), attributes(),

class(). How can we use them?

 The summary() function return the descriptive summary of an object, e.g.

descriptive statistics for data objects, analysis results for model objects or just the list

of object’s internal attributes. As mentioned before, every R object has its own specific

summary function, e.g. for a vector:

> vector1 <- sample(1:100, size = 20)

> summary(vector1)

 Min. 1st Qu. Median Mean 3rd Qu. Max.

 1.00 15.25 52.50 47.15 73.00 97.00

 The next three functions provide information about the type of information

stored in an object and about its attributes. Their usefulness will become clearer when

additional data types will be introduce. In case of vectors the only useful is the mode()

function – it returns the type of stored data (numbers, text, etc.) The class() function

would return exactly the same, whereas the attributes() function will return NULL:

as the most basic data structures in R, vectors don’t have any attributes:

> vector2 <- c('A','B','C')

> mode(vector1); mode(vector2)

[1] "numeric"

[1] "character"

 The most obvious way of using these functions is the logical test to check if

our data are of the required type:

> if(mode(vector2) == "character") "All OK!"

[1] "All OK!"

Other data structures in R

Vectors are the simplest data-types in R – and probably the most widely used.

However we should know more complex data structures as they will allow for more

sophisticated and less cumbersome manipulation of numbers.

 Arrays are used probably as often as vectors. They can be regarded as

generalisation of vectors to cases of more than one dimension. Thus, there can be 2-

dimensional arrays (a “grid” of cells), 3-dimensional arrays (a “cube” of cells), 4-

dimensional tables, and so on. Probably somewhere around the 4th or 5th dimension

28

our imagination will start failing. Luckily – in R arrays are not displayed in the form of

monstrous pseudo-3D things – R uses much simpler, flat representation. All

information about the number of arrays’ dimensions are stored in their attributes and

we can extract them using attributes():

> months <- c("Jan","Feb", "Mar", "Apr", "May", "Jun", "Jul", "Aug",

+ "Sep", "Oct", "Nov", "Dec")

> array(months, c(3,4)) #2D array

#we use a vector [3,4] to specify dimensions

 [,1] [,2] [,3] [,4]

[1,] "Jan" "Apr" "Jul" "Oct"

[2,] "Feb" "May" "Aug" "Nov"

[3,] "Mar" "Jun" "Sep" "Dec"

> array(months, c(2,6))

 [,1] [,2] [,3] [,4] [,5] [,6]

[1,] "Jan" "Mar" "May" "Jul" "Sep" "Nov"

[2,] "Feb" "Apr" "Jun" "Aug" "Oct" "Dec"

> array(months, c(3,2,2)) #3D array

, , 1

 [,1] [,2]

[1,] "Jan" "Apr"

[2,] "Feb" "May"

[3,] "Mar" "Jun"

, , 2

 [,1] [,2]

[1,] "Jul" "Oct"

[2,] "Aug" "Nov"

[3,] "Sep" "Dec"

> attributes(array(months, c(4,3)))

$dim

[1] 4 3

> class(array(months, c(4,3)))

[1] "matrix"

> class(array(months, c(2,2,3)))

[1] "array"

> matrix(months, c(2,6))

 [,1] [,2] [,3] [,4] [,5] [,6]

[1,] "Jan" "Mar" "May" "Jul" "Sep" "Nov"

[2,] "Feb" "Apr" "Jun" "Aug" "Oct" "Dec"

As you could see – a 2-dimensional array is a special data structure in R and is

called a matrix, which should not be surprising. After all – matrices are very common

29

in data analysis. Instead of using array() we can use respective matrix() function.

Both data structures are similar and contain the $dim attribute.

> attributes(array(months, c(2,2,3)))

$dim

[1] 2 2 3

When working with arrays (and matrices) one should remember about some

important rules. Every time we call an object within an array, we do it by specifying

the row and column numbers, row number first. There’s one confusing consequence

of this rule – if we look at any of the matrices above, it’s apparent that columns are

filled from top to bottom. It might seem strange but once we realize that R iterates

through rows first, it becomes clear: the filling of a matrix proceeds row by row (as

rows are called first) and then – having reached the bottom of a column – R jumps to

the next column.

Technically, calling an element from an array means writing it’s indexes (as

many as there are dimensions) in square brackets, in the order explained above,

separated by commas. We may as well use single index – in such a case the whole

array will be treated as a single vector (again, with the order of elements determined

in a way already described).

> mon.arr <- array(months, c(2,2,3))

> mon.arr[2,1,2]

[1] "Jun"

> mon.arr[5]

[1] "May"

If we omit any of the dimensions retaining commas – the result will be the

whole dimension (the one for which there’s no index) extracted:

> mon.arr[2,1,]

[1] "Feb" "Jun" "Oct"

> mon.arr[2,,2]

[1] "Jun" "Aug"

> mon.arr

, , 1

 [,1] [,2]

[1,] "Jan" "Mar"

[2,] "Feb" "Apr"

30

, , 2

 [,1] [,2]

[1,] "May" "Jul"

[2,] "Jun" "Aug"

, , 3

 [,1] [,2]

[1,] "Sep" "Nov"

[2,] "Oct" "Dec"

There are many functions that work only with matrices (and not with arrays),

such as: t() – which transposes a matrix, “reflecting” it relatively to its diagonal;

ncol() and nrow() – which returns the number of rows or columns.

Another important data structure is a list. Sometimes it’s more useful than the

vector as it may store objects of different types. Try building a vector made of text,

numbers and logical values. Is it possible?

> mix.vec <- c(1,2,'a','nie chce mi sie')

> mix.vec

[1] "1" "2" "a" "nie chce mi sie"

No! R automatically converts numbers to ASCII characters. We have to use lists in

order to be able to store these values unaltered:

> mix.list <- list(1,2,'a','nie chce mi sie')

> mix.list

[[1]]

[1] 1

[[2]]

[1] 2

[[3]]

[1] "a"

[[4]]

[1] "nie chce mi sie"

R puts our variables into the list (note lack of quoting marks around numbers,

i.e. they really are numbers). All elements are also given additional indexes within a

list, indicated by double square brackets. Each of these sub-elements is in fact a vector.

Consequently, if one wish to call an element inside a list, they should use double

square brackets around the indexes. It may lead to somehow complex indexing

31

structures as nesting one list inside the other creates the need for double list indexes

(i.e. doubled double square brackets):

> mix.list <- list(1,2,'a','nie chce mi sie',

+ c(33,44),list('nested'))

> mix.list

[[1]]

[1] 1

[[2]]

[1] 2

[[3]]

[1] "a"

[[4]]

[1] "nie chce mi sie"

[[5]]

[1] 33 44

[[6]]

[[6]][[1]]

[1] "nested"

> mix.list[[5]]

[1] 33 44

> mix.list[[5]][2]

[1] 44

> mix.list[[6]]

[[1]]

[1] "nested"

> mix.list[[6]][[1]]

[1] "nested"

Another useful feature of vectors and matrices is the possibility of naming

their elements/rows/columns. Having done so we can use these names instead of

indexes when calling object’s elements:

> sunny.days.krakow <- c(10,9,13,14,23,20,29,27,26,18,5,3)

> names(sunny.days.krakow) <- months

> sunny.days.krakow

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

 10 9 13 14 23 20 29 27 26 18 5 3

> sunny.days.krakow["Feb"]

Feb

 9

32

> mon.matrix <- matrix(months, c(4,3))

> colnames(mon.matrix) <- c("1st","2nd","3rd")

> rownames(mon.matrix) <- c("top","middle1","middle2","bottom")

> mon.matrix

 1st 2nd 3rd

top "Jan" "May" "Sep"

middle1 "Feb" "Jun" "Oct"

middle2 "Mar" "Jul" "Nov"

bottom "Apr" "Aug" "Dec"

When the elements, rows or columns have been names, an object gets the

$names attribute, which contains them:

> attributes(sunny.days.krakow)

$names

[1] "Jan" "Feb" "Mar" "Apr" "May" "Jun" "Jul" "Aug" "Sep" "Oct" "Nov" "Dec"

Arrays and lists are not the only complex data types in R. Another important

structures are factors. They are used to define categorical variables – such as used in

conventional ANOVA. In factors, numbers are not interpreted as numbers but rather

as factor levels (categories). Below we use employ factors to define the cloud cover

during subsequent hours of the day. Cloud cover is measured using a 8-degrees scale

and we might be interested in counting occurrences of a particular degree within our

dataset rather than in treating these measurements as continuous. In other words –

we might prefer expressing cloud cover in nominal scale, hence – as factors. The

summary() function called for a factor object returns counts in respective levels

instead of descriptive statistics known for continuous variables:

> cloud.cover <- c(8, 7, 4, 8, 1, 1)

> names(cloud.cover) <- c(0400, 0800, 1200, 1600, 2000, 0000)

> cloud.cover

 400 800 1200 1600 2000 0

 8 7 4 8 1 1

> summary(cloud.cover)

 Min. 1st Qu. Median Mean 3rd Qu. Max.

 1.000 1.750 5.500 4.833 7.750 8.000

> cloud.cover <- factor(cloud.cover)

> summary(cloud.cover)

1 4 7 8

2 1 1 2

> levels(cloud.cover) #may be used for assigning new level names

[1] "1" "4" "7" "8"

33

Class-control functions

R provides several functions for controlling the class of objects. We’ve seen some of

them already – these were functions used for generating respective objects:

matrix(), list(), factor(), array(), data.frame() (more on data-frames in the

next section). Their arguments are usually single values or vectors of values, and

sometimes additional parameters modifying the way these functions work. However –

their output is “permanent” – a new instance of the respective data objects is created.

However, it might as well be useful to treat an object as if it was of other type, just for

the purposes of the current procedure. To achieve this we can use as-functions:

> vector <- c(1,1,2,2,1,3,4)

> as.factor(vector)

[1] 1 1 2 2 1 3 4

Levels: 1 2 3 4 5

> as.matrix(vector)

 [,1]

[1,] 1

[2,] 1

[3,] 2

[4,] 2

[5,] 1

[6,] 3

[7,] 4

> as.data.frame(vector)

 vector

1 1

2 1

3 2

4 2

5 1

6 3

7 4

Another important group of functions are is-functions, which allow for testing

the type of an object:

> is.vector(vector)

[1] TRUE

> is.factor(vector)

[1] FALSE

Data-frames

We have reached probably the most essential section on data types in R and that

would be the data-frame. They’re usually used to store data obtained in regular

research. Each data-frame contains several columns called variables, each reflecting

34

one particular quantity measured. Variables have names, stored in the $names

attribute. Rows (or subsequent cases/data points) also may be named ($row.names),

but by default they are numbered consecutively.

Let us enter simple data-frame; it contains data for silk production by

silkworms (current production), together with respective variables describing the sex

of individuals, number of days it had been producing silk, humidity of the

environment, silk production of their parents (previous production). Hence, rows of

the table represent individual caterpillars.

> silk.production <- data.frame(

+ 'sex' = c(1,2,2,1,1,1,1,2,2,2,1,2,1,2,1),

+'no.days' = c(10,12,8,21,20,13,18,19,20,20,10,7,9,12,12),

+ 'humid' = c(100,100,90,89,88,78,79,90,88,90,87,

+ 90,76,56,78),

+ 'prev.prod'=c(100,340,546,234,432,765,432,318,287,

+ 190,223,210,218,220,431),

+ 'curr.prod'=c(34,45,38,76,54,28,56,98,67,32,22,10,23,43,8))

> silk.production

 sex no.days humid prev.p curr.p

1 1 10 100 100 34

2 2 12 100 340 45

3 2 8 90 546 38

4 1 21 89 234 76

5 1 20 88 432 54

6 1 13 78 765 28

7 1 18 79 432 56

8 2 19 90 318 98

9 2 20 88 287 67

10 2 20 90 190 32

11 1 10 87 223 22

12 2 7 90 210 10

13 1 9 76 218 23

14 2 12 56 220 43

15 1 12 78 431 8

> summary(silk.production)

 sex no.days humid prev.p

 Min. :1.000 Min. : 7.00 Min. : 56.00 Min. :100.0

 1st Qu.:1.000 1st Qu.:10.00 1st Qu.: 78.50 1st Qu.:219.0

 Median :1.000 Median :12.00 Median : 88.00 Median :287.0

 Mean :1.467 Mean :14.07 Mean : 85.27 Mean :329.7

 3rd Qu.:2.000 3rd Qu.:19.50 3rd Qu.: 90.00 3rd Qu.:431.5

 Max. :2.000 Max. :21.00 Max. :100.00 Max. :765.0

 curr.p

 Min. : 8.00

 1st Qu.:25.50

 Median :38.00

 Mean :42.27

 3rd Qu.:55.00

 Max. :98.00

35

It’s obvious that the sex variable should be categorical rather than continuous.

We can access this variable either by selecting the first column or by using the

variable’s name. The rule here is the same as in the case of matrices – first we indicate

the row, then the column. Omitting one index means that we want to extract the whole

row/column.

> silk.production[10,1]

[1] 2

> silk.production[,1]

 [1] 1 2 2 1 1 1 1 2 2 2 1 2 1 2 1

> silk.production$sex

 [1] 1 2 2 1 1 1 1 2 2 2 1 2 1 2 1

Zmieńmy zatem typ danych w kolumnie z płcią:

> silk.production$sex <- as.factor(silk.production$sex)

> summary(silk.production)

 sex no.days humid prev.p curr.p

 1:8 Min. : 7.00 Min. : 56.00 Min. :100.0 Min. : 8.00

 2:7 1st Qu.:10.00 1st Qu.: 78.50 1st Qu.:219.0 1st Qu.:25.50

 Median :12.00 Median : 88.00 Median :287.0 Median :38.00

 Mean :14.07 Mean : 85.27 Mean :329.7 Mean :42.27

 3rd Qu.:19.50 3rd Qu.: 90.00 3rd Qu.:431.5 3rd Qu.:55.00

 Max. :21.00 Max. :100.00 Max. :765.0 Max. :98.00

Applying functions and transformations to whole datasets is as easy as working

with single vectors. Here we calculate the mean daily production of silk for each

individual and add it as a new variable to the data-frame:

> average.p <- silk.production$curr.p / silk.production$no.days

> average.p

 [1] 3.4000000 3.7500000 4.7500000 3.6190476 2.7000000 2.1538462

 [7] 3.1111111 5.1578947 3.3500000 1.6000000 2.2000000 1.4285714

[13] 2.5555556 3.5833333 0.6666667

> cbind(silk.production, average.p)

 sex no.days humid prev.p curr.p average.p

1 1 10 100 100 34 3.4000000

2 2 12 100 340 45 3.7500000

3 2 8 90 546 38 4.7500000

4 1 21 89 234 76 3.6190476

5 1 20 88 432 54 2.7000000

6 1 13 78 765 28 2.1538462

7 1 18 79 432 56 3.1111111

8 2 19 90 318 98 5.1578947

9 2 20 88 287 67 3.3500000

10 2 20 90 190 32 1.6000000

11 1 10 87 223 22 2.2000000

36

[...clipped...]

We can further extend operations on data-frames to joining several columns or

rows together. The cbind() function joins two vectors column-wisely whereas the

rbind() joins the vectors row-wisely. Of course, we can use these on whole datasets

to add new cases or variables. It’s important that the elements of the vector being

added contained elements in the right order!

Data-frames can be filtered in the same way as vectors. E.g. we can extract the

data on the production of silk only for females (category “2” in sex):

> silk.production[silk.production$sex==2,]

 sex no.days humid prev.p curr.p

2 2 12 100 340 45

3 2 8 90 546 38

8 2 19 90 318 98

9 2 20 88 287 67

10 2 20 90 190 32

12 2 7 90 210 10

14 2 12 56 220 43

Note the position of the logical condition – the test is applied to rows as we want to

have WHOLE rows that contains appropriate value in the second (sex) column.

Indexing can be used to sample our data-frame randomly, e.g. in randomization

methods. We can use the sample() function here:

> silk.production[sample(1:15,5),]

 sex no.days humid prev.p curr.p

12 2 7 90 210 10

5 1 20 88 432 54

8 2 19 90 318 98

13 1 9 76 218 23

2 2 12 100 340 45

Sorting data-frames according to particular variables is also simple. Note that

the only thing one have to do is to sort row indexes – that’s why sorting expression

appears in the place of rows:

> silk.production[order(silk.production$no.days),]

 sex no.days humid prev.p curr.p

12 2 7 90 210 10

3 2 8 90 546 38

13 1 9 76 218 23

1 1 10 100 100 34

11 1 10 87 223 22

2 2 12 100 340 45

14 2 12 56 220 43

15 1 12 78 431 8

6 1 13 78 765 28

7 1 18 79 432 56

37

8 2 19 90 318 98

5 1 20 88 432 54

9 2 20 88 287 67

10 2 20 90 190 32

4 1 21 89 234 76

If one want to remove data from a data-frame it can be done by using negative

subscripts: this indicates the numbers of rows that should be deleted. The minus sign

may also be applied to the whole logical condition – in such a case rows or columns

satisfying the condition will be deleted (note that the same could be achieved by

filtering the data-frame with the “not equal to” (!=) operator). Here we remove the 3rd

and 4th rows and then all records of females:

> silk.production[-(3:4),][-which(silk.production$sex==2),]

 sex no.days humid prev.p curr.p

1 1 10 100 100 34

6 1 13 78 765 28

7 1 18 79 432 56

8 2 19 90 318 98

9 2 20 88 287 67

13 1 9 76 218 23

15 1 12 78 431 8

Finally, it might be the case that we want to remove all missing data points

(records containing NA’s). To do this we use na.omit() function:

> missing <- data.frame(‘var1’=c(1,2,3,4,5,6,NA),

+ ‘var2’=c(2,2,2,NA,NA,2,2)) #sample data with NAs

> missing

 var1 var2

1 1 2

2 2 2

3 3 2

4 4 NA

5 5 NA

6 6 2

7 NA 2

> na.omit(missing)

 var1 var2

1 1 2

2 2 2

3 3 2

6 6 2

NaN or Not-A-Number

Sometimes R operates on values that are not numbers, such as missing values or

division-by-zero outputs:

> 2/0

38

[1] Inf

Here the infinity (the result of dividing by zero) is a non-numerical value. Such values

can seriously hamper our work wince many functions return NaNs after encountering

even single NaNs in the set of values. One possible solution for this problem is using

the na.rm argument, that is provided by several R functions and lets them ignore

non-numerical values:

> x <- c(2,3,4,5,6,NA)

> var(x,na.rm=T)

[1] 2.5

> var(x)

[1] NA

If for some reason one want to check is the value is NA (e.g. to filter out such

values from a dataset) do not try to use conventional logical test, i.e. A!=NA as it won’t

work. Instead, use the class-controlling function is.NA(A).

Attach() and with() – a digression

You have probably noted that in data-frames we used the usual way of calling

variables, that is using the dollar operator. However the need for providing the whole

name of the table may be annoying. That’s why you might want to use the attach()

function. It allows for attaching the whole object to the namespace we are currently

working in. Names of all variables become available without the need of using the

dollar operator and invoking the name of the table. Compare:

> silk.production$prev.p

 [1] 100 340 546 234 432 765 432 318 287 190 223 210 218 220 431

> attach(silk.production)

> prev.p

 [1] 100 340 546 234 432 765 432 318 287 190 223 210 218 220 431

There is however one problem. Once the table have been attached – the names

of all variables are directly available but we can easily overwrite them by creating a

new object with the same name. In such a case it is easy to forget that we’ve attached

an object – and use the name as if it was from the data-frame. However now it refers

to something entirely different, which may introduce serious bias in our analyses. The

reason for that is the location of the attached table in the hierarchy of the namespace.

All newly created objects are placed in the global environment and by default they

have higher priority over subsequent sections of the namespace. We can actually see

this hierarchy after calling the search() function:

39

> search()

 [1] ".GlobalEnv" "silk.production" "package:sudoku"

 [4] "package:stats" "package:graphics" "package:grDevices"

 [7] "package:utils" "package:datasets" "package:methods"

[10] "Autoloads" "package:base"

> prev.p <- 'Iam not correct!'

> prev.p #newly created object replaced the one from the table

[1] "Iam not correct!"

Fear not! The data in the data frame remain intact. The only thing that

changed is that there’s one more object called prev.p (you can check this by calling

silk.production$prev.p).

Of course we can remove attached objects from the namespace using the

detach() function. It removes all variable names from current namespace and once

again we must provide full names with $ to call variables. Fortunately for those that

prefer safety over convenience – there’s one more solution. By using the with()

function we can both call variables using their names (without the name of the table)

and avoid any problems. This is because with() doesn’t attach the object

permanently, just allows for temporal in-line use of simple variable names. The choice

is yours – but be aware of dangers.

> with(silk.production, prev.p)

[1] 100 340 546 234 432 765 432 318 287 190 223 210 218 220 431

Data input

The last but maybe most important section on data was skipped until now. You

probably wondered how to enter your own data to R. the simplest way of doing that is

using the scan() function, which reads numbers (data) from the standard computer

input (the keyboard). Leaving the last position empty ends the data chain and results

in the formation of the data vector:

> scan()

1: 3

2: 4

3: 5

4: 6

5:

Read 4 items

[1] 3 4 5 6

Most commonly we store our research data in electronic spread-sheets such

as Excel. We can load them into R in several ways. First – make sure your dataset

meets several requirements of the R environment, most importantly variable names

are single words or multiple words joined by dots or underlines (they cannot contain

40

white spaces). Excel file should be saved as the Unicode text file with columns

separated by tabulators or as a csv file. To read such file into R we use the

read.table() function if our numbers have dot-separated decimals or

read.delim2() if numbers have comma-separated decimals. By specifying head=T

we indicate that the first row contains variable names. The sep argument specifies

the character that separates columns (if that should be the tabulator “\tab” it can be

omitted; if this is comma – use sep=”,” or employ alternative reading function –

read.csv(); note that in csv files by default decimals must be separated by dots).

> mydata <- read.table(file="cisnienie.txt", head=T, sep="\t")

Upon reading to R – all text values are automatically converted to factors. In case we

wanted them imported as text values we could add the as.is=T argument.

Similarly, we can write the data-frame to disc:

> write.table(silk.production, file="silk.dat", sep="\t")

Manipulating tables

Tabular datasets are preferred in R and it provides several specific functions designed

for handling and summarizing data in tabular form. At first these functions may seem

complicated and hard to predict, but once you have started using R on a regular basis

they prove to be very useful.

The tapply() function applies specified procedure to a vector (or column)

of data according to some grouping variables. E.g. let’s calculate mean current

production of silk by individuals of different sex:

> with(silk.production, tapply(curr.p,sex,mean))

 1 2

37.62500 47.57143

The result of this function is a table structured according to used grouping

variables. If there are two grouping variables – the output table becomes more

complex:

> with(silk.production, tapply(curr.p,list(sex,humid),mean))

 56 76 78 79 87 88 89 90 100

1 NA 23 18 56 22 54 76 NA 34

2 43 NA NA NA NA 67 NA 44.5 45

41

In case of matrices the specified function can be applied to either columns or

rows. Rows form the margin number 1, columns are margin number 2. Here we

calculate standard deviation column-wise:

> mymat <- matrix(silk.production$curr.p,c(3,5))

> mymat

 [,1] [,2] [,3] [,4] [,5]

[1,] 34 76 56 32 23

[2,] 45 54 98 22 43

[3,] 38 28 67 10 8

> apply(mymat,2,sd)

[1] 5.567764 24.027762 21.779195 11.015141 17.559423

Then we subtract obtained SD values column-wise from the values of the original

matrix:

> sds <- apply(mymat,2,sd)

> sweep(mymat,2,sds)

 [,1] [,2] [,3] [,4] [,5]

[1,] 28.43224 51.972238 34.22081 20.984859 5.440577

[2,] 39.43224 29.972238 76.22081 10.984859 25.440577

[3,] 32.43224 3.972238 45.22081 -1.015141 -9.559423

Similar function for vectors is called sapply(vector, FUN) – it applies the

FUNction to each element of the vector and returns a list.

42

Part 3 ~ Graphics and plotting

Graphical devices

As anything else in R – graphics may be more complicated than it should.

Unfortunately there’s no way around – we’ll have to go through the basics first and

learn some of the most non-intuitive ways of dealing with graphics.

To start with – let’s generate a sample data set. The syntax of the following

will be a mystery for you (at least until our next meeting) but just assume you’re

generating linearly correlated data with two variables, y being normally distributed:

> x <- runif(20, min=1, max=10)

> y <- x + rnorm(20, mean=0, sd=1)

> plot(x,y)

Waiting to confirm page change...

> abline(lm(y~x))

Fig 1: Sample graph

What happened is that we used the function plot to generate the general plot

and then used the function abline to add the line to it. It’s important to remember,

that abline can do its job only when the plot it could draw onto already exists. If not

– you’ll get an error message. That brings us to the concept of the graphic device in R

(Davey, 2009; see also Crawley, 2010). Graphic device is anything that takes your data

and prints it in the graphical format. By default, when calling any plotting function in

43

R, it opens a standard output device – which is simply your screen (that’s this window

popping up when you call plot). There are other possible devices – some of them allow

for writing the graphics to the file so you can save the plot. In windows it’s a little bit

simpler – having focus on the device window just choose File > Save as > [File format]

and you’ll be able to save your plot on the hard drive. Below there’s a list of the most

common graphic devices; they’re also names of the functions used for handling them:

Table 1: Graphic devices

windows() Open MS Windows window

quartz() Works in MacOS

x11() UNIX display

pdf() PDF file (multipage)

postscript() Postscript file (multipage)

png() PNG file (one page)

jpeg() JPG file (one page)

tiff() TIFF file (one page)

Please notice that some devices allow multiple pages – plotting new graphs

will just add the pages to the existing files. Other devices allow just one page and any

next page added to the graph will destroy previous content. You can see the list of

available devices using dev.list(). By using dev.curr() you’ll get the name of the

currently working device. You can open a device by using functions from above table

and close it by using dev.off(). Finally you can close all open devices by using

graphics.off(). Let’s plot our graph to a PDF file:

> pdf("plik.pdf")

> plot(x,y)

> abline(lm(y~x))

> dev.off()

windows

 2

44

In R you can choose the graphing functions from three different packages. The

oldest one is graphics, which is automatically loaded when R starts. Inside it you can

find so called high-level functions for creating graphs of different types – and low-level

functions for adding different things to your graphs. But more advanced packages are

available that produce more professional-looking and more aesthetical graphs – and

these are ggplot2 and lattice. We’ll look shortly on the standard graphing

functions and then introduce these more advanced packages. Please note that

ggplot2 and lattice are not available by default and you’ll have to install them

manually.

Table 2: High-level plotting functions

Function Plot type

assocplot Association plot

barplot Bar-plot

boxplot Box-plot

bxp Box-plot from summaries

cdplot Conditional density plot

contour Contour (map-like) plot

coplot Conditioning plot

curve Draw mathematical curve

dotchart Cleveland Dot plot

filled.contour Level plot

fourfoldplot Fourfold plot

hist Histogram

image Digital image

matplot Plot from columns of a matrix

mosaicplot Mosaic plot

persp 3D plot

pairs Scatterplot matrix

pie Pie chart

plot x-y plot

spineplot spineplot and spinograms

45

stars star (spider/radar) plot

stem stem-and-leaf plot

Working with standard graphics

In the graphics package the way of working is always the same: you create a graph

using a high-level function and the you adjust the graph using low-level functions.

Below you’ll find most widely used high-level functions with brief descriptions of

what they do:

Many of these functions take additional arguments for early customization of

the plots – look up their help pages for more details. To play with them – let’s use

some example data set called pressure. It contains data on temperature and pressure

in a data-frame:

> plot(pressure)

Waiting to confirm page change...

> plot(pressure$temperature, pressure$pressure)

Waiting to confirm page change...

> plot(pressure~temperature, data = pressure)

Waiting to confirm page change...

46

Fig 2: Sample plot

 As you can see – all three plots are similar – they just differ in the way the

data – and their labels – are assigned to the axes. Actually the third method is the best

– it’s the most self-explanatory and gives the best axis labels. Other functions use more

arguments at the start. E.g. let’s generate a histogram of 200 normally distributed

random numbers:

> hist(rnorm(200))

Waiting to confirm page change...

47

Fig 3: Sample histogram of gaussian data

We might as well adjust shape and position of bars on our graph. Let’s create two

additional ones (by using par() which will be explained a bit later). They show two

kinds of adjustments we may do to the histogram:

> par(mfrow = c(2,1), mex = 0.6)

> hist(rnorm(200), breaks = 20)

Waiting to confirm page change...

> hist(rnorm(200), breaks = c(-4, -3, -1, -0.5, 0, 0.25, 0.5,

+ 0.6, 1, 2, 4))

48

Fig 4: Sample layouts of histograms

Standard X-Y plotting function also allows for some minor adjustments:

> y <- rnorm(20)

> par(mfrow = c(2,2), mex = 0.6)

> plot(y, type="l")

Waiting to confirm page change...

> plot(y, type="p")

> plot(y, type="b")

> plot(y, type="h")

49

Fig 5: Different types of plots

As you can see – using standard high-level functions is quite straightforward

but confusing, especially at the beginning. Problem is that the names of arguments are

often quite mysterious and they don’t explain themselves so you’ll have to remember

a lot of them. And that’s not over!

Low-level functions

Low-level functions allow for adding elements to existing graphs. Below you’ll find the

list of common low-level functions and what they do (Table 3):

50

Let’s try to add some elements to our previous graph: we’ll add the box

around the graph, some text, an arrow and a legend:

x <- runif(20, min = 1, max = 10)

> y <- x + rnorm(20, mean = 0, sd = 1)

> plot(x, y, pch = 2, main = "Plot of x and y to show low-level

+ functions")

Waiting to confirm page change...

> lmfit <- lm(y ~ x)

> abline(lmfit)

> box(col = "grey")

> arrows(5, 8, 7, predict(lmfit, data.frame(x = 7)))

> text(5, 8, "Line of best fit", pos = 2)

> legend(7.5, 3, c("x on y"), pch = 2)

Fig 6: Additional elements as low-level functions

51

Table 3: Low-level functions

Function Action

abline Add straight lines to the plot

arrows Add arrows

axis Add axes to the plot

box Draw box around a plot

grid Add grid

legend Add legends

lines Add connected line segments

mtext Write text into the margins of the plot

panel.smooth Simple panel plot

points Add points

polygon Draw polygon

rect Draw rectangles

rug Add rug to the plot

segments Add line segments

symbols Draw symbols

text Add text

title Plot annotation

Graphical states and parameters

So far we’ve used several different parameters (such as line style) inside the graphing

function. When called like this they’re applied only to this particular call and don’t

affect other plots. But we can set these parameters manually to work in the whole R

workspace and thus – change default values of these attributes in other R functions.

To do this – we should use the par() function. Everything specified there will change

the state of a variable – but you can still override this by specifying your own value in

a graphing function call. You can see different types of state variables in the attached

table. Some of them are callable from the par() or in any other graphing function,

some can be set only by par(). Finally – some are read-only and cannot be set by the

user. It will become more apparent during the class. It is a good practise to save

starting values of these parameters to an object (e.g. parameters<-par()) in order to

be able to restore them if needed (par(parameters)).

52

Positioning plots

You’ve seen the use of par() to set multiple plots on one page. By using mfrow and

mex arguments we were able to set the grid of several plots and specify the space

between them. Here, we’ll do the same for four diagnostic plots from a simple linear

regression:

> par(mfrow = c(2,2), mex = 0.6)

> plot(lm(y ~ x))

Waiting to confirm page change...

Fig 7: Subdivided plot space

We might also want to adjust the relative heights and widths on our graph. Here we

should use layout-manipulating function:

> layout(cbind(c(4, 2), c(0,0), c(3,1)), heights = c(2,1),

+ widths = c(2, lcm(2), 1))

> par(mex=0.6)

> plot(lm(y ~ x))

Waiting to confirm page change...

53

Fig 8: Manipulated layout

On the picture at the end (below the Short Guide to the Most Essential

Functions) you’ll find an illustration of additional positioning parameters that may

influence the layout of your graphs.

GGPLOTS

Do you have the impression that these plotting functions are a little bit to slow and

tedious? If yes – you’re correct. Standard graphing package of R is old and uses just

about 10% of modern computers calculating power. What if we want to have

professional, publication-quality plots? I suggest using ggplot2 and lattice. Let’s have a

brief overview. We’ll use some of the example data available with these packages.

54

 First – let’s make simple plot for the relationship of body size and brain

weight for 83 mammal species:

> library(ggplot2)

> attach(msleep)

> plot(bodywt, brainwt, log = "xy")

Waiting to confirm page change...

> abline(lm(log10(brainwt) ~ log10(bodywt)))

Fig 9: Body weights and brain weights of mammals using graphic package

Now let’s try the ggplot2 version (the function is called qplot and mimics the standard

plot function):

> print(qplot(bodywt, brainwt, log = "xy"))

55

Fig 10: Body and brain weights using qplot

I hope you to think this plot is better and more aesthetical than the previous

one. We could also want to add the regression line to our graph. Since elements of the

graph in this package are so called geoms – we add another geom specifying that we

want a regression line:

> print(qplot(bodywt, brainwt, log = "xy",

+ geom = c("point", "smooth"), span = 1))

56

Fig 11: Adding regression line as a smoother

We can also play with the “span” parameter – it regulates the smoothness of the line –

or the degree it tries to fit the data correctly.

 The data in our dataset are grouped according to the type of food each species

takes. We could incorporate this in our traditional plot:

> plot(bodywt, brainwt, log = "xy", pch = as.numeric(vore))

Waiting to confirm page change...

> legend(0.1, 4.4, c("carni", "herbi", "insecti", "omni", "NA"),

+ pch = 1:5)

57

Fig 12: Simple plot with different symbols

Neat? But look at the output of ggplot2:

> print(qplot(bodywt, brainwt, log = "xy", shape = vore))

Fig 13: qplot with different symbols

58

We could also group them by colour:
> print(qplot(bodywt, brainwt, log = "xy", shape = vore))

Fig 14: qplot with coloring (see PDF version)

I hope I encouraged you to explore the ggplot2 package. Lattice mentioned

earlier is similar – it also produces complex plots of publication-quality, but has

superb advantage of plotting complex multivariate plots for random-variable

analyses. Feel free to explore their manuals – both are real treasuries of fresh and

modern graph types!

59

Part 4 ~ Hypothesis testing. Simple tests

Distributions

R uses a set of predefined distributions and also provides several functions for

obtaining different pieces of information from them. There are four types of

distribution-related functions – beginning with the letters r, d, ,p and q. They return –

respectively: pseudo-random observation from a specified distribution; probability

density function (point value) for a given value; cumulative probability for a given

value (i.e. p of getting value smaller than specified); value from a distribution given

specified cumulative probability (i.e. quantile for a given P). E.g. for normal

distribution:

> y <- rnorm(50, mean = 30, sd = 10)

> y

 [1] 18.38744 35.70038 22.02886 26.38781 35.08229 21.40059 22.39499

 [8] 56.68030 34.22761 21.95484 14.69376 38.31176 13.21152 44.17276

[15] 41.42520 35.73230 37.05871 32.00607 60.06589 33.17033 44.65350

[22] 35.79607 26.31287 17.77483 50.62435 40.11203 36.65872 32.58801

[29] 15.16906 13.63348 40.38250 39.48611 46.92860 5.16183 49.33278

[36] 21.83284 33.02274 22.92437 31.50554 30.56412 30.33825 33.05177

[43] 20.17136 40.76705 30.61425 31.85321 22.95693 32.19884 38.83665

[50] 15.75178

> dnorm(30, mean = 30, sd = 10)

[1] 0.03989423

> pnorm(30, mean = 30, sd = 10)

[1] 0.5

> qnorm(0.025, mean = 30, sd = 10)

[1] 10.40036

Importantly, these values are much more useful than those drawn from

statistical tables – as scientists did before the era of modern computers. They’re

calculated from a scratch – allowing for precise calculation of errors and other

probability-related values in statistics. Other distributions included in R (used in

exactly the same way – by prefixing them with an appropriate letter (p, q, d, r)) are

presented in Table 4 (adapted from Davey, 2009).

Most of them can be used without any arguments (they take default

arguments in such a case) – but look up their help pages to see specific modes of use

and detailed information about possible arguments.

60

Table 4: Distributions available in basic distribution of R

Name Function Name Function

Beta beta Multinomial multinom

Binomial binom Negative binomial nbinom

Cauchy cauchy Normal norm

Chi-Squared chisq Poisson pois

Exponential exp Student t t

F f Studentised range tukey

Gamma gamma Uniform unif

Geometric geom Weibull weibull

Hypergeometric hyper Wilcoxon Rank Sum wilcox

Logistic logis Wilcoxon Sign Rank signrank

Lognormal lnorm

Data diagnostics

Before doing any tests it’s a good practice to explore our data and look for possible

violations of mostly accepted assumptions that should be met in popular tests.

Checking your data is simple and in most cases requires some diagnostic plots – but

beginning with simple summary is always the best way:

> summary(leaf$y)

 Min. 1st Qu. Median Mean 3rd Qu. Max.

 1.904 2.241 2.414 2.419 2.568 2.984

> leaf <- read.table(file="leaf.txt", head=T)

> par(mfrow=c(2,2))

> plot(leaf$y)

> boxplot(leaf$y)

> hist(leaf$y,main="")

> plot(c(leaf$y,30))

61

Fig 15: Graphs for data exploration

 One quick look on the graphs should be enough to spot possible outliers and

deviations form general variation. Outliers can be also spotted with ordinary boxplot:

> boxplot(c(leaf$y,4,3,3.5,3.49,3.41), outline=T)

Fig 16: Checking for outliers

62

Fig 17: Checking for normality

Another important assumption that has to be met in parametric tests is a

normality assumption. It can be easily tested with a quantile - quantile plot, that plots

ranked quantiles from our sample against quantiles from the normal distribution. Any

severe deviations form a x = y line indicate departures from normality. As you can see

(Fig. 17) – in our data this is not an issue (it’s also evident from near equality of

median and mean):

> qqnorm(leaf$y)

> qqline(leaf$y,lty=2)

Of course, we could use some more formal way of testing normality – e.g. with

a Shapiro-Wilk test:

> shapiro.test(rpois(n=30,lambda=0.1))

 Shapiro-Wilk normality test

data: rpois(n = 30, lambda = 0.1)

W = 0.2754, p-value = 4.402e-11

63

> shapiro.test(exp(rnorm(100)))

 Shapiro-Wilk normality test

data: exp(rnorm(100))

W = 0.5563, p-value = 6.854e-16

In the second case we have used an obviously non-normal distribution (lognormal)

and got a significant result, indicating significant deviation from normality. This is the

usual way of using statistical tests in R – after providing something like name.test

you enter any arguments necessary and put in you data. The result is usually some

form of summary table with statistics values, P values and additional information. It is

important to note that any hypothesis test produces a new kind of R object of class

htest. These objects provide several attributes allowing to access some particular

“parts” and values in our test object:

> sometest <- shapiro.test(exp(rnorm(100)))

> sometest

 Shapiro-Wilk normality test

data: exp(rnorm(100))

W = 0.6932, p-value = 3.762e-13

> attributes(sometest)

$names

[1] "statistic" "p.value" "method" "data.name"

$class

[1] "htest"

As any other object – you can assign the result of your test to a variable for further

manipulation or to simply store it’s result in one place.

Some popular tests

R is a real treasury of statistical tests – just have a look at the Table 5 (adapted from

Crawley, 2010):

As always it’s good to look through the help pages for these tests to look for

specific uses and lists of available arguments. As examples of handling test objects and

extracting information from them – we’ll deal with some of the most popular test

statistics.

64

If our attempt is to check the difference between two means our first guess

would be a Student’s t-Test. Let’s check if the growth rate of daphnias in two different

rivers differ significantly:

> daphnia <- read.table(file="daphnia.txt", sep="\t", head=T)

> with(daphnia, t.test(Growth.rate~Water))

 Welch Two Sample t-test

data: Growth.rate by Water

t = -1.0984, df = 63.189, p-value = 0.2762

alternative hypothesis: true difference in means is not equal to 0

95 percent confidence interval:

 -0.9362193 0.2720467

sample estimates:

mean in group Tyne mean in group Wear

 3.685862 4.017948

 Table 5: Tests available in the basic distribution of R

Name Function Name Function

Ansari-Bradley test ansari.test

Cochran-Mantel-

Haenszel Chi-Sq
test

mantelhaen.test

Bartlett for

homogeneity of V
bartlett.test

Mauchly’s test of

sphericity
mauchly.test

Exact binomial test binom.test Oneway ANOVA oneway.test

Box-Pierce test box.test
Test for trend in
proportions

prop.trend.test

Chi-squared test chisq.test Quade test quade.test

Correlation test cor.test Shapiro-Wilk test Shapiro.test

Fisher exact fisher.test Student’s t-Test t.test

Fligner-Killeen for

homogeneity of V
fligner.test

F test for
comparing
variances

var.test

Friedman Rank sum

test
friedman.test

Wilcoxon Rank
Sum and Signed
Ranks t.

Wilcox.test

Kruskal-Wallis
Rank Sum test

kruskal.test AND OTHERS…

Kolmogorov-
Smirnov test

ks.test

65

It appears they don’t differ. Displaying attributes of the object created after

using t-test shows some useful values we could extract in our future analyses:

> daph <- with(daphnia, t.test(Growth.rate~Water))

> attributes(daph)

$names

[1] "statistic" "parameter" "p.value" "conf.int"

[5] "estimate" "null.value" "alternative" "method"

[9] "data.name"

$class

[1] "htest"

Importantly – our data could be aligned in two different ways. Daphnias’ data

were entered in a way every statistician would do this, but we could as well enter

single-variable measures column-wisely and thus creating several columns of the

same response. E.g.:

> beetles <- read.table(file="beetle.txt", head=T, sep="\t")

> beetles

 beetleX beetleZ

1 3 5

2 4 5

3 4 6

4 3 7

5 2 4

6 3 4

7 1 3

8 3 5

9 5 6

10 2 5

> with(beetles, t.test(beetleX, beetleZ))

 Welch Two Sample t-test

data: beetleX and beetleZ

t = -3.873, df = 18, p-value = 0.001115

alternative hypothesis: true difference in means is not equal to 0

95 percent confidence interval:

 -3.0849115 -0.9150885

sample estimates:

mean of x mean of y

 3 5

> parasites <- c(beetles$beetleX, beetles$beetleZ)

> label <- factor(c(rep("X",10),rep("Z",10)))

> plot(parasites~label,notch=T,xlab="Beetle",ylab="Parasites")

66

Fig 18: Box-notch graph for beetles example

Here we’ve tested if the amount of parasites in a beetle differed between two

treatments subjecting the insects to different kinds of meds (X and Z). Both the test

and the notch-plot indicate that there’s a significant difference between the levels of

parasite abundance. Here, the test was specified using the treatment groups and not

the formula-like expression.

Since our data are counts of parasites we might want to use a non-parametric

alternative of the Student’s t-test:

> with(beetles, wilcox.test(beetleX, beetleZ))

 Wilcoxon rank sum test with continuity correction

data: beetleX and beetleZ

W = 11, p-value = 0.002988

alternative hypothesis: true location shift is not equal to 0

Warning message:

In wilcox.test.default(beetleX, beetleZ) :

 cannot compute exact p-value with ties

67

Here we’ve also found a significant difference – although the test is less powerful.

Additionally, we have a warning message that our P value is rather an approximation

than a strict value (due to ties found in ranked values of our observations).

When doing most of the tests we often would like to determine the nature of

our test (one- or two-tailed) and specify if our data constitute two independent

samples or paired measures. Let’s try a clinical trial example – the following data

show the response of the GABA level to some kind of psychotherapy, measured on the

same individual pre- and post-therapy. Is there any difference between these levels –

specifically, is there any increase in these values, as predicted by theory?

> with(gaba, t.test(before, after))

 Welch Two Sample t-test

data: before and after

t = -0.4088, df = 29.755, p-value = 0.6856

alternative hypothesis: true difference in means is not equal to 0

95 percent confidence interval:

 -5.248256 3.498256

sample estimates:

mean of x mean of y

 12.500 13.375

> with(gaba, t.test(before, after, paired=T,alternative="less"))

 Paired t-test

data: before and after

t = -3.0502, df = 15, p-value = 0.00405

alternative hypothesis: true difference in means is less than 0

95 percent confidence interval:

 -Inf -0.3721108

sample estimates:

mean of the differences

 -0.875

Clearly – when an appropriate (and justified!) type of test is used – the differences are

apparent. Here, again you should notice that we’re more like experimenting with R

than learning pure statistics. We should always check our assumptions before

performing any test. For the t-test we could check if the variances are equal:

> var.test(gaba$before, gaba$after)

 F test to compare two variances

data: gaba$before and gaba$after

F = 0.8337, num df = 15, denom df = 15, p-value = 0.7292

alternative hypothesis: true ratio of variances is not equal to 1

95 percent confidence interval:

68

 0.2912836 2.3860713

sample estimates:

ratio of variances

 0.8336807

But perhaps the most important “statistic” we could run is:

> length(gaba$before)

[1] 16

In other words, if we don’t have enough data – we should be extremely cautious in our

inferences. How to know how much data is required?

Power calculation

Power analysis in R is easy. There are 3 main functions for doing this, matched with 3

most important statistical techniques you might use: power.t.test,

power.prop.test and power.anova.test. In any of these functions you provide

several parameters and get the result telling you how you should plan your

experiment in order to be able to detect an effect of desired strength. Arguments you

provide to these functions are: n - the number of observations per group, delta – the

difference in means you’d like to detect, sd – SD of the sample, sig.level – default is

5%, power – inverse of the II-type error, default is 80%, type of the test (independent

samples or paired), alternative (one-tailed, two-tailed). You should leave one of

these as NULL – this will become your result. E.g. if the mean of your response is

around 20 and you’d like to detect the difference of 10% (i.e. delta = 2) you could call:

> power.t.test(delta=2, sd=3.5, power=0.8)

 Two-sample t test power calculation

 n = 49.05349

 delta = 2

 sd = 3.5

 sig.level = 0.05

 power = 0.8

 alternative = two.sided

 NOTE: n is number in *each* group

All other parameters are left default (it’s for a two-sample two-tailed test). It indicates

that for detecting an effect of this magnitude you’d need at least 50 replicates in each

group. Check what you’d be able to examine if you could afford a sample of only 60

objects (30 a group).

69

Bootstrapping

Sometimes you’re unable to run classical tests – e.g. distributions look odd. Recall the

classical experiment of Michelson (1880) with measuring the speed of light. We’ll use

his data (as departures from the value of 299000, to make the numbers shorter) and

check if this speed is different from 299990 – a value widely accepted in XIX c.

> light <- read.table(file="light.txt", sep="\t", head=T)

> summary(light)

 speed

 Min. : 650

 1st Qu.: 850

 Median : 940

 Mean : 909

 3rd Qu.: 980

 Max. :1070

As you can see – the mean is very different from median, suggesting strong skewness

in our data. It’s also apparent from some diagnostic plots:

Fig 19: Diagnostic plots for speed-of-light data

70

Classical tests would probably give biased results. We could use some non-

parametric tests, e.g.:

> wilcox.test(light$speed, mu=990)

 Wilcoxon signed rank test with continuity correction

data: light$speed

V = 22.5, p-value = 0.00213

alternative hypothesis: true location is not equal to 990

Warning message:

In wilcox.test.default(light$speed, mu = 990) :

 cannot compute exact p-value with ties

But we could use randomization as well – here most probably in the form of

bootstrapping. Basically, we have to sample our observations to obtain new samples

and based on these samples – we generate the distribution of our sample statistics (in

this case – the mean). Since our sample mean is 909 – the distribution based on the

null hypothesis will have such mean. Then we should ask – how likely it is to obtain

from this distribution the value of 990 (the value we’re testing our sample against). If

this probability will be low enough (to say – lower than 5%) we’ll reject the

hypothesis that our sample comes from the population with the mean of 990. More

specifically – based on this simulated distribution we should be able to specify the

confidence interval for our mean.

> a <- numeric(10000) # here we’ll store our simulated means (10000)

> for (i in 1:10000) { #we iterate 10000 times...

+

+ a[i] <- mean(sample(light$speed, replace=T))

...every time calculating the mean

+

+ }

> par(mfrow=c(1,1))

> hist(a, main="")

> quantile(a, c(0.025,0.975))

 2.5% 97.5%

863.0000 950.5125

71

Fig 20: Histogram from bootstrapping

Alternatively we could use an external library boot to the same. Here it’s

sometimes tricky to specify the statistic’s function used for resampling, but once we’ve

done that – the rest is simple:

> library(boot)

> mymean <- function(val,i) mean(val[i])

> myboot<-boot(light$speed,mymean,10000)

> myboot

ORDINARY NONPARAMETRIC BOOTSTRAP

Call:

boot(data = light$speed, statistic = mymean, R = 10000)

Bootstrap Statistics :

 original bias std. error

t1* 909 -0.0853 23.03312

> boot.ci(myboot)

BOOTSTRAP CONFIDENCE INTERVAL CALCULATIONS

72

Based on 10000 bootstrap replicates

CALL :

boot.ci(boot.out = myboot)

Intervals :

Level Normal Basic

95% (863.9, 954.2) (866.0, 956.0)

Level Percentile BCa

95% (862.0, 952.0) (856.0, 948.5)

Calculations and Intervals on Original Scale

Warning message:

In boot.ci(myboot) : bootstrap variances needed for studentized intervals

73

Part 5 ~ Statistical modeling

The outline

Statistical modeling constitutes the essence of contemporary statistical analysis. It

stems from one simple idea: try to fit some arbitrary relationship to your data and

then estimate the goodness of fit with respect to all parameters included. Several

functions allow you to fit statistical models to your data –depending on the form of

your model, types of your variables and whether they contain fixed or random effects.

In general the model is defined using so called formula: it’s always of the same

form: response~dependent_variable1+dpenedent_variable2+etc. Operators in

formulae work in the following way: + means include a variable; - means exclude a

variable; : forms an interaction between explanatory variables; * includes both

single variables and their (all possible) interactions; / means nesting; | conditions

(response as a function of a variable given the condition). Below you’ll find formulae

for most popular types of models (adapted and modified after Crawley, 2010).

As you can see, assigning the formula to a particular type of model is rather

arbitrary – all these are just different types of additive (linear) models. Functions that

deal with LMs are listed in Table 7 below – your choice will depend on the type of

variables in your model (random/fixed) and the distribution your data follow

(adapted and modified after Crawley, 2010).

Table 6: Formula syntax

Formula Model type

y ~ 1 Null model

y ~ x Linear regression – x is continuous

y ~ factor One-way ANOVA – factor is a categorical variable

y ~ factor1 + factor2 Two-way ANOVA without interaction

y ~ A*B*C Factorial ANOVA with all possible interactions

y ~ A*B*C – A:B:C 3-wayANOVA without the 3rd-order interaction

y ~ a/b/c
Factor a nested in b which is nested in c (rarely used
in GLMM)

y ~ factor + x ANCOVA – common slope but two intercepts

y ~ factor*x ANCOVA – two slopes and two intercepts

74

y ~ x + z Multiple regression

y ~ x + z multiple regression with interaction
Table 7: Modeling functions in R

Function Package Description

lm stats Linear model – simple regression

aov stats ANOVA and ANCOVA

anova stats

Compares two model objects (most often with different fixed-
effects structures) and compares their goodness of fit (residual sum
of squares)

glm stats Generalised Linear Model (non-gaussian data)

nls stats Nonlinear least squares

loess stats Local polynomial regression (form of smoothing)

gam gam Generalized additive model

lme nlme* Linear mixed effects model (only gaussian data)

nlme nlme* Nonlinear mixed effect model

lmer lme4*
Linear, generalized linear and nonlinear models (GLMM) using
restricted maximum likelihood (REML)

MCMCglmm MCMCglmm*
GLMM using Bayesian statistics (Markov Chains); allows also for
fitting random regression models and meta-analyses

glmmPQL MASS* GLMM using penalized quasi-likelihood

It’s important to note once again that in fact majority of the above functions

would give the same results, at least for similar types of analyses (e.g. for Gaussian

data with categorical explanatory variables each of the following – lm, glm, anova –

would yield the same conclusions, either qualitatively and quantitatively; everything

else being equal – both LM and ANOVA are just different kinds of linear models and

differ in the way the design matrix for fixed effects is defined). However, it’s always

reasonable to choose the most suitable function, both for speeding up our analyses

and for obtaining the most suitable and appropriate type of output.

Simple linear models

To illustrate the way statistical modeling works in R let’s try to fit simple linear

regression to some data. The data below are for the association between mortality

75

(continuous Gaussian response) and smoking (continuous explanatory variable) – i.e.

the best alternative from the above will be lm():

> smoke <- read.table(file="smoke.txt", sep="\t", head = T, skip = 1)

> smoke.lm <- with(smoke, lm(Mortality~Smoking))

> summary(smoke.lm)

Call:

lm(formula = Mortality ~ Smoking)

Residuals:

 Min 1Q Median 3Q Max

-30.107 -17.892 3.145 14.132 31.732

Coefficients:

 Estimate Std. Error t value Pr(>|t|)

(Intercept) -2.8853 23.0337 -0.125 0.901

Smoking 1.0875 0.2209 4.922 5.66e-05 ***

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 18.62 on 23 degrees of freedom

Multiple R-squared: 0.513, Adjusted R-squared: 0.4918

F-statistic: 24.23 on 1 and 23 DF, p-value: 5.658e-05

> attributes(smoke.lm)

$names

 [1] "coefficients" "residuals" "effects" "rank"

 [5] "fitted.values" "assign" "qr" "df.residual"

 [9] "xlevels" "call" "terms" "model"

$class

[1] "lm"

> predict(smoke.lm)

 1 2 3 4 5 6 7

 80.85467 146.10660 124.35596 99.34271 123.26842 108.04297 117.83076

 8 9 10 11 12 13 14

 98.25518 92.81752 108.04297 96.08012 110.21804 113.48063 118.91829

 15 16 17 18 19 20 21

120.00583 116.74323 133.05621 141.75647 122.18089 111.30557 91.72999

 22 23 24 25

 96.08012 105.86791 79.76713 68.89181

> resid(smoke.lm)

 1 2 3 4 5

 3.1453349 -30.1066007 -1.3559555 28.6572865 31.7315768

 6 7 8 9 10

 -7.0429716 0.1692381 14.7448187 11.1824800 -20.0429716

 11 12 13 14 15

 7.9198832 18.7819639 -27.4806329 -22.9182942 23.9941735

 16 17 18 19 20

 22.2567703 -20.0562136 4.2435283 5.8191090 3.6944316

 21 22 23 24 25

-12.7299877 -11.0801168 14.1320929 -19.7671329 -17.8918103

76

Last three commands show the attributes of a lm object and also provide two

functions we can use to access the values predicted by the model and the residuals.

You could easily check that the residuals are actually true – of course, if you’re still

having some doubts R is actually doing what you want it to do:

> smoke$Mortality[4:6] - predict(smoke.lm)[4:6]

 4 5 6

28.657286 31.731577 -7.042972

> resid(smoke.lm)[4:6]

 4 5 6

28.657286 31.731577 -7.042972

One look at the graph is enough to see that in fact the relationship is strong

and significant. Here we generate the x-y plot for the raw data, and then use predicted

values for some specified x values (in the range between 60 and 140) to generate

fitted line and confidence bands for the regression. matlines() adds these three lines

to the plot:

> with(smoke,plot(Mortality~Smoking,xlab="Smoking [months]",

+ ylab="Mortality [year^-1]", las = 1))

> x2 <- seq(60,140,2)

> y2 <- predict(smoke.lm, list(Smoking=x2),int="c")

> matlines(x2,y2,lty=c(1,2,2),col=c("black","red","red"))

> #adds confdence band

77

Fig 21: Simple plot with confidence band

Sometimes, especially with complex models, you’d like to re-run the analysis

without the need of specifying the model again. Fortunately, all functions making use

of formulae (listed in the table above) allow for updating the formulae (which turns

out to be useful when doing stepwise simplification of the model):

> x <- runif(100, min=10, max=30) # independent variable

> y <- x + rnorm(100, mean=25, sd=11) # correlated response

> z <- runif(100, min=9, max=31) # 2nd independent, not correlated

> model1 <- lm(y~x+z)

> summary(model1)

Call:

lm(formula = y ~ x + z)

Residuals:

 Min 1Q Median 3Q Max

-28.773 -9.299 -1.866 9.132 32.705

Coefficients:

 Estimate Std. Error t value Pr(>|t|)

(Intercept) 29.48872 5.79090 5.092 1.74e-06 ***

x 0.85799 0.21555 3.980 0.000133 ***

z 0.01784 0.18239 0.098 0.922288

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 11.75 on 97 degrees of freedom

Multiple R-squared: 0.1405, Adjusted R-squared: 0.1227

F-statistic: 7.926 on 2 and 97 DF, p-value: 0.0006483

78

> model2 <- update(model1, ~.-z)

> summary(model2)

Call:

lm(formula = y ~ x)

Residuals:

 Min 1Q Median 3Q Max

-28.743 -9.303 -1.785 9.120 32.592

Coefficients:

 Estimate Std. Error t value Pr(>|t|)

(Intercept) 29.8598 4.3530 6.86 6.25e-10 ***

x 0.8570 0.2142 4.00 0.000123 ***

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 11.69 on 98 degrees of freedom

Multiple R-squared: 0.1404, Adjusted R-squared: 0.1316

F-statistic: 16 on 1 and 98 DF, p-value: 0.0001228

Is the second model really better? Let’s check – we’ll employ the anova
function, which (a bit counter-intuitively) does not run any kind of ANOVA (you have
aov for that), but compares the goodness of fit of two models comparing their residual
sums of squares:

> anova(model1, model2)

Analysis of Variance Table

Model 1: y ~ x + z

Model 2: y ~ x

 Res.Df RSS Df Sum of Sq F Pr(>F)

1 97 13388

2 98 13389 -1 -1.3203 0.0096 0.9223

Both models provide similar fit – RSS is a bit lower for the first (more complex) model
but the difference is not significant. Having no evidence for significant differences we
should obviously choose simpler model.

In fitting any linear model it’s important to check assumptions. Two are
essential: normality of errors and homogeneity of variance. The easiest way of
spotting any violations of assumptions is using diagnostic plots.

> par(mfrow=c(2,2))

> plot(smoke.lm)

> par(mfrow=c(1,1))

79

Fig 22: Diagnostic plots for checking assumptions

One quick look is enough to see that residuals are fairly normally distributed

and our data only weakly deviate from the normal distribution (plots 1 and 2). We can

see (plot 4) that point number 2 (116, 137) has a great influence on our fit (it lies close

to the red dashed lines designating Cook’s influence statistics critical values). We

might try removing this point and looking at the fit again to check if statistical

significance is not the result of this one point influencing our analysis:

> smoke.lm2 <- with(smoke, update(smoke.lm, subset=(Mortality!=116)))

> summary(smoke.lm2)

Call:

lm(formula = Mortality ~ Smoking, subset = (Mortality != 116))

Residuals:

 Min 1Q Median 3Q Max

-29.7425 -11.6920 -0.4745 13.6141 28.7587

Coefficients:

 Estimate Std. Error t value Pr(>|t|)

(Intercept) -20.0755 23.5798 -0.851 0.404

Smoking 1.2693 0.2297 5.526 1.49e-05 ***

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 17.62 on 22 degrees of freedom

Multiple R-squared: 0.5813, Adjusted R-squared: 0.5622

F-statistic: 30.54 on 1 and 22 DF, p-value: 1.488e-05

80

Finally, sometimes – especially in more complex GLM models, we might want to

explore the degree of autocorrelation in the residuals of our model. We could use this

using durbinWatsonTest from car library:

> install.packages("car")

> library(car)

> durbinWatsonTest(smoke.lm)

 lag Autocorrelation D-W Statistic p-value

 1 0.01874995 1.921095 0.714

 Alternative hypothesis: rho != 0

> with(smoke,dataEllipse(Smoking, Mortality))

Fig 23: Elipses of normality

Here – there’s no evidence for autocorrelation in the residuals (P>0.05). Additionally,

we’ve applied the ‘ellipses’ function to visualise how good our data reflect a bivariate

normal distribution (by default, the 50th and 90th percentiles of the normal

distribution are plotted) (Fig 23).

Going multiple – basic tools for models with more than one x

Defining a multiple regression model is as straightforward as seen in case of simple

regression. The only thing that arises may be the case of nonlinearity (it’s more likely

we’d have to deal with it when the nr of explanatory variables increases) and the

81

decision as to which interactions of explanatory variables should we keep. Here we’ll

see a very simple case of multiple regression, where the response (subjective taste of a

cheese) is correlated with three variables objectively describing a cheese (lactic acid

concentration, hydrosulphide content and acetic acid concentration). We begin with

familiarizing ourselves with the data by plotting simple pairwise regressions for all

possible pairs of variables:

> ser <- read.table(file="ser.txt", head=T, sep="\t")

> ser <- ser[,-1]

> pairs(ser, panel=panel.smooth)

Fig 24: Pair-wise plot of all variables

It seems that taste is positively correlated with all three descriptors of cheese

chemistry. Further – could we expect any curvilinear relationships? The pairwise plots

are not definitive – it’s good to employ general additive models which don’t assume

82

anything about linearity of the relationship (in fact – the allow for non-linearity) and

they employ non-parametric smoothing techniques to fit the most appropriate form of

relationship:

> library(mgcv)

This is mgcv 1.6-2. For overview type 'help("mgcv-package")'.

> par(mfrow=c(2,2))

> modelgam <- gam(taste~s(Acetic)+s(H2S)+s(Lactic), data=ser)

> plot(modelgam)

> par(mfrow=c(1,1))

Fig 25: Plots from GAM function

All three plots (as you probably guessed – they show relationships together

with confidence intervals) show no evidence for non-linearity – we can than omit all

quadratic and higher order terms in our subsequent models. How should we deal with

non-linearity once spotted? The easiest way is fitting higher order terms – i.e.

quadratic, cubic and higher by using I() function (see below) or by forming

polynomials (expressions approximating our relationship by using power series of an

appropriate order; function poly()). The decision which to choose is rather formal –

the results would be the same. Let’s look at this example; here you’ll generate simple

data with curvilinear pattern (by imposing a quadratic function). As you can see,

83

simple linear regression yields poor fit. Adding one quadratic term of the explanatory

variable makes the fit much better:

> x <- runif(20,1,20) #explanatory variable

> y <- x^2 + rnorm(20,5,15) #parabola-shaped response

> plot(x,y, las=1) #las makes y labels horizontal

> linear <- lm(y~x) #linear predictor

> abline(linear, col="red", lty=2) #lty sets the dashed line

> quadratic <- lm(y~x+I(x^2)) #parabolic predictor

> range <- seq(1,20,1) #range for parabole x values

> yp <- predict(quadratic, list(x=range)) #parabole y values

> lines(range,yp,col="blue",lty=2) #adds parabole to the plot

> anova(linear,quadratic) #compares two models using ANOVA

Analysis of Variance Table

Model 1: y ~ x

Model 2: y ~ x + I(x^2)

 Res.Df RSS Df Sum of Sq F Pr(>F)

1 18 21530.1

2 17 3053.5 1 18477 102.87 1.258e-08 ***

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

As you can see – the parabola fits our data much better than a straight line. ANOVA

comparing these two models confirms the result: with quadratic term (which also is

statistically significant in the summary of lm()) our model yields much lower RSS.

Let’s go back to our cheese. We know quadratic or higher terms won’t be

necessary. Should we include any interactions? The tree regression analysis should

give us quick answer. This is still rarely used method, but highly informative and also

speeds up analyses by employing by-eye inspection. In tree regression all effects from

our model form tree-like structure; the most influential variables form the longest

branches. In case of interactions, we should note unequal distribution of variables on

different branches of the tree, implying differential influence of these variables

depending on the value of another variable (located higher in the tree hierarchy). Let’s

look at the example:

> library(tree)

> modeltree <- tree(taste~., data = ser)

> plot(modeltree)

> text(modeltree)

84

Fig 26: Example of the regression tree

The longest branches reflect the influence of H2S variable. Second most

influential is Lactic –lengths of their branches in both groups of H2S are equal

indicating lack of any interaction. In line with GAM analysis – Acetic seems to have no

influence on the response. We’ve decided to fit simple multiple regression, with no

curvilinear terms. We’ll include second-order interaction just to illustrate the way we

deal with multiple term models but obviously as no interactions seems to be involved

– we’ll omit 3rd order interaction of all three variables.

> model3 <- lm(taste ~ Acetic+Lactic+H2S+Acetic*Lactic*H2S-

+ Acetic:Lactic:H2S, data = ser)

> summary(model3)

Call:

lm(formula = taste ~ Acetic + Lactic + H2S + Acetic * Lactic *

 H2S - Acetic:Lactic:H2S, data = ser)

Residuals:

 Min 1Q Median 3Q Max

-19.675 -5.273 -1.011 5.785 25.072

Coefficients:

 Estimate Std. Error t value Pr(>|t|)

(Intercept) 104.5479 102.2068 1.023 0.317

Acetic -30.7974 23.9574 -1.286 0.211

Lactic -60.1029 116.5393 -0.516 0.611

H2S 6.1573 20.9537 0.294 0.772

Acetic:Lactic 19.0531 22.6367 0.842 0.409

Acetic:H2S 0.5734 3.5246 0.163 0.872

Lactic:H2S -3.6493 4.4944 -0.812 0.425

Residual standard error: 10.33 on 23 degrees of freedom

Multiple R-squared: 0.6795, Adjusted R-squared: 0.5959

F-statistic: 8.127 on 6 and 23 DF, p-value: 8.718e-05

85

Oops. It seems nothing noticeable is happening in our dataset?! Maybe it’s because

we’ve included these interactions without any firm evidence they should influence the

response. We could follow a step by step simplification of our models, based on P

values and goodness-of-fit parameters – but currently a widely accepted procedure is

the application of AIC (Akaike’s Information Criterion). R provides an automated

engine for selecting the best model based on AIC values (a reminder – the lower the

AIC the better the model’s fit to our data):

> summary(step(model3))

Start: AIC=146.15

taste ~ Acetic + Lactic + H2S + Acetic * Lactic * H2S - Acetic:Lactic:H2S

 Df Sum of Sq RSS AIC

- Acetic:H2S 1 2.826 2458.9 144.19

- Lactic:H2S 1 70.402 2526.4 145.00

- Acetic:Lactic 1 75.651 2531.7 145.06

<none> 2456.0 146.15

Step: AIC=144.19

taste ~ Acetic + Lactic + H2S + Acetic:Lactic + Lactic:H2S

 Df Sum of Sq RSS AIC

- Lactic:H2S 1 69.427 2528.3 143.02

<none> 2458.9 144.19

- Acetic:Lactic 1 204.750 2663.6 144.59

Step: AIC=143.02

taste ~ Acetic + Lactic + H2S + Acetic:Lactic

 Df Sum of Sq RSS AIC

- Acetic:Lactic 1 140.13 2668.4 142.64

<none> 2528.3 143.02

- H2S 1 992.67 3521.0 150.96

Step: AIC=142.64

taste ~ Acetic + Lactic + H2S

 Df Sum of Sq RSS AIC

- Acetic 1 0.55 2669.0 140.65

<none> 2668.4 142.64

- Lactic 1 533.32 3201.7 146.11

- H2S 1 1007.66 3676.1 150.25

Step: AIC=140.65

taste ~ Lactic + H2S

 Df Sum of Sq RSS AIC

<none> 2669.0 140.65

- Lactic 1 617.18 3286.1 144.89

- H2S 1 1193.52 3862.5 149.74

Call:

lm(formula = taste ~ Lactic + H2S, data = ser)

Residuals:

 Min 1Q Median 3Q Max

-17.343 -6.530 -1.164 4.844 25.618

Coefficients:

 Estimate Std. Error t value Pr(>|t|)

86

(Intercept) -27.592 8.982 -3.072 0.00481 **

Lactic 19.887 7.959 2.499 0.01885 *

H2S 3.946 1.136 3.475 0.00174 **

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 9.942 on 27 degrees of freedom

Multiple R-squared: 0.6517, Adjusted R-squared: 0.6259

F-statistic: 25.26 on 2 and 27 DF, p-value: 6.551e-07

At the end we’re left we the best-fitting model and indeed – this model shows

significant trends in variables indicated by tree(). Remember that using any of

automated methods in R does not release you from being critical and conservative. I

also suggest reading some literature on AIC and information-based approaches as

they have as much advantages and followers as drawbacks. You should always use

both software-driven tests and rational biological thinking.

Robust regression

As we’ve seen in case of our first diagnostic analysis for smoke.lm – sometimes single

points in our datasets have a great influence on the fit of our model. Often these points

are also outliers – and if we don’t have any reason to discard these points as

erroneous – we have to deal with them in some other way. Robust regression is what

brings us closer to the solution. In robust regression the algorithms estimate

parameters of our model minimizing not sum of squared residuals (as in classical OLS

estimation) but e.g. absolute values of residuals (as in least absolute deviations – LAD)

or in methods employing M-estimators (which use minimizing of other functions of

residuals; the OLS and LAD are just special cases of the latter). To use robust

regression you should download and install the MASS package. The main function of

interest would be rlm(). I’ll leave exploring these possibilities to those interested:

> install.packages(“MASS”)

> library(MASS)

> ?rlm

ANOVA and the use of contrasts

Linear regression implies that your explanatory variables are continuous. But the

framework of linear modeling can easily be extended to cases where the variables are

categorical. In the sense of linear model specification it means estimating differences

between the overall mean and means associated with specific factor levels rather than

slopes for continuous variables. It should become clearer when we use the example.

Here we’ll be analysing the data (adapted from Crawley, 2010) on the clipping

87

experiment carried out to show how cutting shoots or roots of adjacent plants

influences the production of biomass of the focal individual and hence – the

competition among them.

> clipping <- read.table(file="competition.txt", sep="\t", head=T)

> summary(clipping)

 biomass clipping

 Min. :415.0 control:6

 1st Qu.:508.8 n25 :6

 Median :568.0 n50 :6

 Mean :561.8 r10 :6

 3rd Qu.:631.8 r5 :6

 Max. :731.0

> clipanova <- aov(biomass~clipping, data=clipping)

> summary.aov(clipanova)

 Df Sum Sq Mean Sq F value Pr(>F)

clipping 4 85356 21339.1 4.3015 0.008752 **

Residuals 25 124020 4960.8

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

> summary.lm(clipanova)

Call:

aov(formula = biomass ~ clipping, data = clipping)

Residuals:

 Min 1Q Median 3Q Max

-103.333 -49.667 3.417 43.375 177.667

Coefficients:

 Estimate Std. Error t value Pr(>|t|)

(Intercept) 465.17 28.75 16.177 9.4e-15 ***

clippingn25 88.17 40.66 2.168 0.03987 *

clippingn50 104.17 40.66 2.562 0.01683 *

clippingr10 145.50 40.66 3.578 0.00145 **

clippingr5 145.33 40.66 3.574 0.00147 **

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 70.43 on 25 degrees of freedom

Multiple R-squared: 0.4077, Adjusted R-squared: 0.3129

F-statistic: 4.302 on 4 and 25 DF, p-value: 0.008752

First of all – we see two types of output available here. In case of regression

the output was simple – we just got the intercept (the overall mean for all explanatory

variables equal to zero) and estimates of slope(s). Here – it’s different. In the

summary.aov table we get familiar ANOVA table listing all relevant sources of

variation and partitioning of this variation allowing for the F-test. summary.lm is

different: here we have some estimates for all treatment levels. What do they mean?

By default, ANOVA in R fits so called treatment contrasts that compare the intercept

(which is the mean of the first – alphabetically or numerically – factor level; control in

88

this case) with the means for other treatments. As you could expect – these contrasts

may be a little confusing – here it looks like we’d have to retain all parameters in our

model - which in fact is not the case! Note that e.g. the estimates for clippingr10 and

clippingr5 are not statistically different (the difference is less than ~2SE) so they

could be merged together freeing some degrees of freedom and simplifying our

ANOVA. Moreover – these contrasts are not orthogonal – they’re not independent one

from another simply because comparing Intercept with clipping25 and

clipping50 employs multiple comparison of the same means. Could we specify our

own contrasts? Yes – and actually it’s quite easy. The only thing we should learn is the

syntax of contrast specification. How it works? Contrasts are specified by assigning

positive and negative numbers to the opposing groups of means (or single means) that

have to be compared. E.g. if we wanted to compare our control with four treatment

means, we could assign some negative value to the control, and positive values to the

remaining means. The trick is that these + / - coefficient should add up to zero. For our

experiment we could specify the following contrasts: control vs. treatment means;

shoot clipping means vs. root clipping means; means for different shoot clipping

levels; means for different root clipping means. The matrix specifying these contrasts

would be as follows:

> comparis <- cbind(c(4,-1,-1,-1,-1),c(0,1,1,-1,-1),

+ c(0,0,0,-1,1),c(0,1,-1,0,0))

> rownames(comparis) <- c("control", "clippingn25",

+ "clippingn50", "clippingr5", "clippingr10")

> comparis

 [,1] [,2] [,3] [,4]

control 4 0 0 0

clippingn25 -1 1 0 1

clippingn50 -1 1 0 -1

clippingr5 -1 -1 -1 0

clippingr10 -1 -1 1 0

Here each column stands for a single comparison, rows stand for treatment levels.

Every time zero appears in the matrix, it means that a particular effect is excluded

from the comparison. You can see that all columns add up to zeros. Moreover,

pairwise products of any of two columns add to zero, which indicates that our

contrasts are orthogonal (independent comparisons).

Assigning contrasts works by simply modifying the contrasts attribute of our

data frame. The we can rerun our ANOVA. Be careful of the double naming

clipping$clipping, resulting from the fact that both our data and the treatment on

our data are called clipping:

> contrasts(clipping$clipping) <- comparis

> clipanova <- aov(biomass~clipping, data=clipping)

89

> summary.lm(clipanova)

Call:

aov(formula = biomass ~ clipping, data = clipping)

Residuals:

 Min 1Q Median 3Q Max

-103.333 -49.667 3.417 43.375 177.667

Coefficients:

 Estimate Std. Error t value Pr(>|t|)

(Intercept) 561.80000 12.85926 43.688 < 2e-16 ***

clipping1 -24.15833 6.42963 -3.757 0.000921 ***

clipping2 -24.62500 14.37708 -1.713 0.099128 .

clipping3 -0.08333 20.33227 -0.004 0.996762

clipping4 -8.00000 20.33227 -0.393 0.697313

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 70.43 on 25 degrees of freedom

Multiple R-squared: 0.4077, Adjusted R-squared: 0.3129

F-statistic: 4.302 on 4 and 25 DF, p-value: 0.008752

How should we interpret these results? For every contrast we have one

clippingX label. They are respective to the contrasts we’ve specified. It’s clear that

the only parameter we need in our model reflects comparison of the control with all

four treatments. Both shoot vs. root pruning and shoot/root pruning themselves don’t

generate any statistically significant differences. It’s important to note that – although

all clippingX’s estimate differences between means specified in contrasts – the

intercept is no longer for the control-treatment mean. Now it estimates the overall

mean (all treatments and control pooled together).

Generalized Linear Models

Sometimes – or better said – quite often (in biology) our data do not conform with the

assumption of error normality. If our data are in form of counts, proportions, binaries

or time-to-death – we are likely to observe diverse kinds of relationships between

mean ad variance. This violates one of the most important assumptions of classical

ANOVA or linear regression, i.e. the assumption of homogeneity of variances. One

possible solution is to transform our data (using standard methods such as logs, roots

– or by using more advanced approaches, like the boxcox() function from the MASS

library, applying the Box-Cox transformation). Alternatively we can use linear

modeling by applying an appropriate link function that normalizes our response

rather than using pure response data. The latter approach is equivalent with using

generalized linear models (generalized stands for “allowing non-normal error

structures”). To do this we employ glm() function in R.

90

Let’s see how it works by using a simulated dataset. We will define our theoretical

generalized linear equation (i.e. we’ll know the exact form of the linear predictor) and

then we’ll see if an appropriate GLM model yields correct values. Here we’ll use both

normally and Poisson distributed responses, with the intercept of 1 (μ = 1), regression

coefficients β2 = 0 and β3 = 1 and residual variance 2; thus our full linear predictor (it’s

parametrical form in the population) would be y = 0.x + 1.z and we’ll fit the following

model: y ~ μ + β2 + β3 + error. We aim at estimating the values of the intercept and two

regression coefficients, plus the residual variance.

> x <- runif(1000, 0, 1) #uniform random variable

> z <- rnorm(1000, 0, sqrt(1.5)) #normal random variable

> lin <- 1 + 0*x + 1*z #desired linear predictor

> y <- rnorm(1000, lin, sqrt(2)) #added residuals form the response

> yp <- rpois(1000, exp(lin)) #alternative Poisson response

> glmdata <- data.frame(yn = y, yp = yp, x = x, z = z)

> glmnorm <- glm(yn ~ x + z, data=glmdata)

> summary(glmnorm)

Call:

glm(formula = yn ~ x + z, data = glmdata)

Deviance Residuals:

 Min 1Q Median 3Q Max

-4.58847 -0.87353 0.04924 0.85829 3.66437

Coefficients:

 Estimate Std. Error t value Pr(>|t|)

(Intercept) 1.02776 0.09139 11.246 <2e-16 ***

x 0.08314 0.15163 0.548 0.584

z 1.04039 0.03553 29.284 <2e-16 ***

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

(Dispersion parameter for gaussian family taken to be 1.932124)

 Null deviance: 3585.4 on 999 degrees of freedom

Residual deviance: 1926.3 on 997 degrees of freedom

AIC: 3501.5

Number of Fisher Scoring iterations: 2

The results of this fit (of course every time they’ll be slightly different due to random

nature of our input data) are satisfactory; they correspond to what we’ve simulated.

Particularly, the values of the regression coefficients are correct. Now see what would

happen if you tried fitting the Poisson response using normal error structure:

91

> glmnorm2 <- glm(yp ~ x + z, data = glmdata)

> summary(glmnorm2)

Call:

glm(formula = yp ~ x + z, data = glmdata)

Deviance Residuals:

 Min 1Q Median 3Q Max

 -9.656 -3.996 -1.318 1.795 115.922

Coefficients:

 Estimate Std. Error t value Pr(>|t|)

(Intercept) 5.9117 0.5119 11.548 <2e-16 ***

x -0.4318 0.8493 -0.508 0.611

z 5.6205 0.1990 28.242 <2e-16 ***

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

(Dispersion parameter for gaussian family taken to be 60.6248)

 Null deviance: 108799 on 999 degrees of freedom

Residual deviance: 60443 on 997 degrees of freedom

AIC: 6947.6

Number of Fisher Scoring iterations: 2

Due to severe violation of assumptions (in Poisson data the variance exhibits

a linear relationship with the mean) the estimates of our parameters are severely

biased. Removing this bias is possible by using an appropriate link function (i.e. by

specifying the correct error structure):

> glmpois <- glm(yp ~ x + z, data=glmdata, family = poisson)

> summary(glmpois)

Call:

glm(formula = yp ~ x + z, family = poisson, data = glmdata)

Deviance Residuals:

 Min 1Q Median 3Q Max

-3.0094 -0.9051 -0.1908 0.6208 3.3223

Coefficients:

 Estimate Std. Error z value Pr(>|z|)

(Intercept) 0.98370 0.03228 30.475 <2e-16 ***

x 0.01154 0.04551 0.254 0.8

z 0.99788 0.01089 91.647 <2e-16 ***

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

(Dispersion parameter for poisson family taken to be 1)

 Null deviance: 9590.9 on 999 degrees of freedom

Residual deviance: 1048.3 on 997 degrees of freedom

AIC: 3741.9

92

Number of Fisher Scoring iterations: 5

Here our estimates are correct because we applied the correct error

structure, in accordance with the distribution of the response in our data. That should

emphasize the importance of careful inspection of your data. Unfortunately,

sometimes using the proper distribution is not enough to fit an appropriate model to

your data. Here we have the luxury of knowing exactly what is the true form of the

linear predictor that was used to generate the data. In reality we rarely have this

opportunity and we have to ‘guess’ the best composition of our final model. In case of

Poisson or binomial distributions failing to include some effects in our model

introduces additional residual variation. Unfortunately, in case of such data this extra

variation violates the most basic assumption about e.g. Poisson distribution and this is

the equality of the mean and variance. We call this overdispersion and it’s quite

common in the real data. We can show how it influences by simply intentionally

omitting one important part of our predictor:

> glmpois2 <- glm(yp ~ x, data=glmdata, family = poisson)

> summary(glmpois2)

Call:

glm(formula = yp ~ x, family = poisson, data = glmdata)

Deviance Residuals:

 Min 1Q Median 3Q Max

-3.39770 -2.45693 -1.27163 0.09496 25.49511

Coefficients:

 Estimate Std. Error z value Pr(>|z|)

(Intercept) 1.7530490 0.0273656 64.060 <2e-16 ***

x -0.0003854 0.0454007 -0.008 0.993

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

(Dispersion parameter for poisson family taken to be 1)

 Null deviance: 9591 on 999 degrees of freedom

Residual deviance: 9591 on 998 degrees of freedom

AIC: 12283

Number of Fisher Scoring iterations: 6

Overdispersion in this analysis (predictors account only for some proportion

of variance and thus the residual variance in higher than expected from the Poisson

process) causes severe bias in the estimates. We can have the idea about the degree of

overdispersion by looking at the residual deviance to residual df ratio: in non-

overdispersed data it should be equal to one. Here it’s nearly 10 times higher! Roughly

93

speaking, our data contain 10 times as much variation as they should according to the

Poisson process.

We could try fitting this model with alternative to Poisson called

quasiPoisson, which was designed to deal with this additional variation:

> glmqpois <- glm(yp ~ x, family=quasipoisson, data=glmdata)

> summary(glmqpois)

Call:

glm(formula = yp ~ x, family = quasipoisson, data = glmdata)

Deviance Residuals:

 Min 1Q Median 3Q Max

-3.39770 -2.45693 -1.27163 0.09496 25.49511

Coefficients:

 Estimate Std. Error t value Pr(>|t|)

(Intercept) 1.7530490 0.1189384 14.739 <2e-16 ***

x -0.0003854 0.1973240 -0.002 0.998

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

(Dispersion parameter for quasipoisson family taken to be 18.8901)

 Null deviance: 9591 on 999 degrees of freedom

Residual deviance: 9591 on 998 degrees of freedom

AIC: NA

Number of Fisher Scoring iterations: 6

As you can see – the significance of x went down and SE increased, but nothing else

really has changed. Also, we can see that the dispersion parameter for Poisson

distribution was simulated rather than fixed to one. Quasipoisson works out the exact

value of the ratio of residual deviance to residual df and adjusts the estimates using

this value. Still, however, the estimates are far from being correct. The reason for this

is that quasipoisson uses multiplicative overdispersion model and it’s obvious that –

given the nature of our simulated linear predictor – omitted z had an additive

influence on the response (we added z rather than multiplied by z; see Hadfield

(2010a) for more details). Since this is the case in most biological data – we should try

applying additive overdispersion models. A recently emerged alternative is to use

Markov Chains (Bayesian methodology) rather than frequentists’ approach of

Maximum Likelihood. MC based methods are sometimes slower and cumbersome, but

run long enough (with large enough number of Monte Carlo randomizations) they

provide accurate and unbiased estimates, especially in case of “weird” distributions

such as gamma-distributed responses (common in survival analysis) or zero-inflated

Poisson responses. Let’s try the power of MCMC in our case:

94

> install.packages("MCMCglmm")

> library(MCMCglmm)

> glmmcmc <- MCMCglmm(yp ~ x, family = "poisson", data = glmdata,

+ verbose=F)

> summary(glmmcmc)

 Iterations = 12991

 Thinning interval = 3001

 Sample size = 1000

 DIC: 4489.607

 R-structure: ~units

 post.mean l-95% CI u-95% CI eff.samp

units 1.462 1.260 1.628 878.9

 Location effects: yp ~ x

 post.mean l-95% CI u-95% CI eff.samp pMCMC

(Intercept) 0.97338 0.79778 1.14919 879.8 <0.001 ***

x 0.08298 -0.20720 0.35077 1000.0 0.574

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

As expected - our estimates are much closer to their theoretical values. Moreover –

MCMCglmm does not assume or simulate any value for residual variance. MCMCglmm

knows, that it should fix the residual variance as it cannot be estimated in case of

Poisson distribution. So why there’s some value next to units (which stands for

residuals in MCMCglmm)? As a matter of fact – looking into the object containing

estimates of variances ($VCV) for random effects (here it’s only residual variance)

allows for analysing this value more thoroughly. Here we’ll use two functions – one

uses mode value of the posterior distribution as an estimate of variance; the second

uses highest posterior density to calculate desired percentile range, by default it is

95% credible interval:

> posterior.mode(glmmcmc$VCV)

 units

1.459504

> HPDinterval(glmmcmc$VCV)

 lower upper

units 1.259746 1.628112

attr(,"Probability")

[1] 0.95

The value of residual variance looks strange, but when you think where did the extra

variation come from – you should quickly find the reason for that. Extra variation in

our data comes from not including the z explanatory variable. It was generated using

1.5 as it’s variance – and our residual variance estimate corresponds to that value.

95

Overview of modelling generic functions and attributes

In one of his books Crawley went as far as to say “Fitting models to data is the central

function of R”. It’s hard not to agree with him when you realize the extent of functions

making statistical modelling in R so easy and straightforward. The following table

contains an overview of functions you can apply to model objects as well as the most

important arguments used together with formulae in nearly all modelling functions.

Functions are listed first, than arguments.

Table 8: Functions and arguments used in statistical modeling

Function Description

fitted()
Provides fitted values for predictors provided to the modelin
gfunction

resid() Returns residuals from the model

predict(0 Predicts new values for provided x values

AIC()
Returns AIC score (only for ML/REML methods; not applicable
for quasilikelihood and Bayesian methods)

plot() Diagnostic plots

update() Updates the model object

coef() Returns estimated coefficients of the model

anova()

Compares two model objects (some modelling pckages are not
compatible in this sense, e.g. one cannot compare lmer and glm
objects)

summary.aov() Returns ANOVA table for model fitting

summary.lm() Returns regression coefficients for model fitting

subset(data_set, LOGICAL) Returns subset of the data_set satisfying the LOGICAL condition

Arguments of modelling funtions Description

na.action

What should be done with NAs? Default is na.fail (returns
error); other possibilities are na.omit or na.exclude
(affects the way df are calculated for RSS – see chapter 3); does
not work with MCMCglmm (use
data=na.omit(your_data) instead)

weight
Provides vector object for weighting the residuals; here what is
minimized in OLS is weighted sum of squared residuals

data Defines the data object

family Defines the error distribution (in generalized models)

prior In MCMCglmm – defines prior distributions of random effects

96

mev
In MCMCglmm – provides measurements errors for meta-
analysis

ped In MCMCglmm – provides pedigree for animal model

random In MCMCglmm – formula for random effects

saveX, saveZ
In MCMCglmm – savesthe design matrices for random
fixed/random effects, respectively

You should also remember that you can always invoke type-control functions,

such as attributes(model_object) to see what type of data are contained within

such item. To get to some particular “piece” of model object we have fitted just use the

dollar operator: model_object$attribute_name.

97

Part 6 ~ GLMM

Overview

In case of (G)LMs we are treated all model terms as fixed effects. However in biology

we often fail to specify any particular effect with our treatment/grouping factors.

Things such as populations, plots, nests are assumed to generate variability in our

data through the simple fact that they’re drawn at random from some large

population. In case of fixed effects any change in the response variable comes from the

data associated with a specified, particular level of this effect whereas in random

effects some information comes from data in a particular level, but we also weight the

outcome using data from other levels of random effect, taking into account also

likelihood this effect could take other values. In terms of mathematical

implementation we simply treat variance associated with fixed effects as very large

(infinite) and are interested in the overall effect of a treatment/factor on the mean of

our response. In case of random effects we estimate this variance precisely and are

interested not in the means associated with particular levels but in the overall

variability introduced in our data by these levels. A good rule of thumb is to treat

effects with informative levels as fixed and those with non-informative levels (such as

grouping factors, replication units, blocks etc.) as random (Crawley 2010).

In R there are several possibilities of fitting mixed models (implementing both

fixed and random effects). These methods vary according to their performance, output

format, time required to complete the analysis and data they accept. In the majority of

the cases we will use either lmer from lme4 package or MCMCglmm from MCMCglmm

package (Hadfield, 2010a). Both fit generalized (possible non-normal response) and

random effects, they just differ in the way they achieve that. The former uses classical

REML method, whereas the latter allows for incorporating additional information in

the Bayesian framework and uses Monte Carlo simulations and Markov Chains. Is

there any difference in their reliability or effectiveness? Well – there is. First of all –

lmer performs well only for Gaussian data. If you’d like to analyse non-normal data,

especially using distributions where variance should not be estimated (it equals the

mean; e.g. (zero-inflated)Poisson, binomial), choose MCMCglmm. Real data are often

overdispersed (see discussion in the previous chapter) due to effects we didn’t

account for and quasi distributions in lmer – that should deal with overdispersion –

somehow fail to do this correctly. Maybe it’s because of the ‘under development’

status lme4 is still having. Secondly – when fitting categorical random interactions, the

98

better choice is MCMCglmm because it allows for fitting factor-specific residual

variances; if not accounted for and present, such differences in residual variance

would be likely to be confounded with the variance of factor. Third - comparing

models with non-normal response using likelihood ratio tests or AIC should be treated

with caution – in such cases likelihood is not calculated but approximated. MCMCglmm

provides simple DIC-based system for selecting competing models. Of course –

MCMCglmm has its drawbacks: for large data and complex models calculations may be

slow and tedious – nevertheless they provide reliable estimates, especially for “weird”

distributions.

Simple mixed model and why it should be mixed?

To see mixed effects in action let’s simulate simple data. Imagine you’ve measured tail

lengths in birds from 20 plots in the forest, 5 birds per plot (after Davey 2009). You’d

like to know the effect these plots have on your data.

> plot <- as.factor(LETTERS[rep(1:20,5)]) #generate plots

> ploteff <- rnorm(20, mean=0, sd=sqrt(50)) #effects of the plots

> lin <- 100 + ploteff[plot] #form predictor with intercept of 100

> tail <- rnorm(100, mean=lin, sd=sqrt(50)) #generate data from normal

> mydata <- data.frame(plot = plot, tail = tail)

If we treated plots as fixed effect – here the best estimate of this effects would

be simply the mean for each plot:

> tapply(tail, plot, mean) #apply some function to data by groups

 A B C D E F

 94.88551 104.19274 95.84284 104.09997 105.07422 88.30977

 G H I J K L

 87.14866 115.38389 98.40378 92.86162 116.21911 89.03037

 M N O P Q R

 86.91065 100.27507 108.72091 103.11933 111.70116 92.39619

 S T

 99.91879 109.81192

This should give the same results as fitting a linear model:

> prfixed <- glm(tail ~ plot, data = mydata)$coef

> prfixed

(Intercept) plotB plotC plotD plotE plotF

 96.2846690 -1.6781011 6.2437841 11.8258226 0.5314776 6.4617477

 plotG plotH plotI plotJ plotK plotL

-11.8751458 -9.9479240 -1.1035683 17.4540470 2.0472615 4.4722584

 plotM plotN plotO plotP plotQ plotR

 2.6331821 -6.2494063 -1.4984548 20.6336267 -6.0521353 8.6533025

 plotS plotT

 -4.4806945 7.2699813

> prfixed <- glm(tail ~ plot-1, data = mydata)$coef

99

> prfixed

 plotA plotB plotC plotD plotE plotF plotG

 96.28467 94.60657 102.52845 108.11049 96.81615 102.74642 84.40952

 plotH plotI plotJ plotK plotL plotM plotN

 86.33674 95.18110 113.73872 98.33193 100.75693 98.91785 90.03526

 plotO plotP plotQ plotR plotS plotT

 94.78621 116.91830 90.23253 104.93797 91.80397 103.55465

In the first case we forgot that in modelling functions, for categorical effects we’ll get

the Intercept and deviations from it; thus we’ve subtracted 1 from the formula to get

the means. How it compares to the situation in which we treat plots as random effect?

We’ll use lmer (note that in lmer fixed effects are defined in a standard way whereas

random effects enter through a | operator and in parentheses – the meaning of this

will be explained later):

> install.packages(“lme4”)

> library(“lme4”)

> rantail <- lmer(tail~1+(1|plot), data=mydata)

> summary(rantail)

Linear mixed model fit by REML

Formula: tail ~ 1 + (1 | plot)

 Data: mydata

 AIC BIC logLik deviance REMLdev

 706.5 714.3 -350.3 703.6 700.5

Random effects:

 Groups Name Variance Std.Dev.

 plot (Intercept) 62.146 7.8833

 Residual 44.362 6.6605

Number of obs: 100, groups: plot, 20

Fixed effects:

 Estimate Std. Error t value

(Intercept) 98.552 1.884 52.3

Note that here we use @ instead of $ to access specific information from our

model (here we extract fixed and random effects coefficients for values fitted by our

model):

> prrand <- rantail@ranef+rantail@fixef

> prrand

 [1] 96.56778 95.09925 102.03183 106.91678 97.03289 102.22258 86.17562

 [8] 87.86217 95.60203 111.84214 98.35938 100.48154 98.87213 91.09881

[15] 95.25646 114.62465 91.27145 104.14045 92.64664 102.92988

 What’s essential here is that the variance in our estimates is much higher

when we treat these effects as fixed:

> var(prfixed)

100

[1] 71.01838

> var(prrand)

[1] 54.38815

Also, this variance for random version of our model is closer to the value (50) we’ve

simulated at the beginning.

Let’s move to something more realistic. We’ll employ data on blue tits for

tarsus lengths and back colours. Tits were cross-fostered and dam indicates real

mother, whereas fosternest specifies nest of rearing. We’re interested in the effects of

dams and nest of rearing.

> data(BTdata)

> sikor <- lmer(tarsus~sex+(1|dam)+(1|fosternest),data=BTdata)

> summary(sikor)

Linear mixed model fit by REML

Formula: tarsus ~ sex + (1 | dam) + (1 | fosternest)

 Data: BTdata

 AIC BIC logLik deviance REMLdev

 2087 2115 -1038 2065 2075

Random effects:

 Groups Name Variance Std.Dev.

 dam (Intercept) 0.220259 0.46932

 fosternest (Intercept) 0.069204 0.26307

 Residual 0.567919 0.75360

Number of obs: 828, groups: dam, 106; fosternest, 104

Fixed effects:

 Estimate Std. Error t value

(Intercept) -0.40566 0.06706 -6.049

sexMale 0.76879 0.05714 13.455

sexUNK 0.21043 0.12670 1.661

Correlation of Fixed Effects:

 (Intr) sexMal

sexMale -0.449

sexUNK -0.210 0.224

It’s clear that both fosternest and dam explain significant proportion of variance in

our data. Is that true? In case of mixed models tests using typical Wald-type statistics

(such as t-Student test) are not proper. It’s recommended to use likelihood ratio test.

Fortunately, the anova() function appears to be handy here:

> sikor2 <- lmer(tarsus~sex+(1|dam),data=BTdata)

> anova(sikor,sikor2)

Data: BTdata

Models:

sikor2: tarsus ~ sex + (1 | dam)

sikor: tarsus ~ sex + (1 | dam) + (1 | fosternest)

 Df AIC BIC logLik Chisq Chi Df Pr(>Chisq)

sikor2 5 2086.7 2110.2 -1038.3

sikor 6 2077.1 2105.4 -1032.6 11.518 1 0.0006893 ***

101

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

R knows that here simple RSS (as in lm() and aov()) is not enough. As we can see

both logLik and AIC are lower for the 2nd model (with both effects) – we can than

conclude that the fosternest effect is significant here. Unfortunately, lmer() does not

allow for models with no random effects (so that we could test dam vs. model with

just an intercept). Here other functions such as MCMCglmm are much more useful.

 Adding to our confusion, you actually cannot see the explicit tests for fixed

effects in the model above. Unfortunately, the only thing lmer provides are the t

values – or F values if one apply the anova() function. We can try testing our fixed

effects using these values but remember to use proper degrees of freedom (Hadfield

2009). Probably most conservative df for residuals in our case would be the number of

observations minus the number of levels for dams minus the number of levels for

fosternest.

> tv<-summary(sikor2)@coefs[,3][2]

> df<-dim(BTdata)[1]-nlevels(BTdata$dam)-

+ nlevels(BTdata$fosternest)

> 2*(1-pt(tv,df))

sexMale

 0

> Fv<-anova(sikor2)[,4][1]

> 1-pf(Fv,2,df)

[1] 0

 Important and so far unexplained thing is this mysterious 1| in the

specification of random effects. Vertical line means simply “random interaction”. But

what’s interacting with what here? One stands for intercept – so you should read this

definition as “see how much variation in intercept is introduced by the right-hand

term (here dams or fosternests)”. It’s quite straightforward to introduce another fixed

effect in our formula on the left side. Say, you want to see if dam effect is sex specific –

i.e. the variance resulting from dams is sex-specific and maybe there’s some significant

covariance in dam effects between sexes. To see if that’ the case, enter the following:

> siksex <- lmer(tarsus~sex+(sex-1|dam)+(1|fosternest),data=BTdata)

> summary(siksex)

Linear mixed model fit by REML

Formula: tarsus ~ sex + (sex - 1 | dam) + (1 | fosternest)

 Data: BTdata

 AIC BIC logLik deviance REMLdev

 2097 2149 -1037 2065 2075

Random effects:

 Groups Name Variance Std.Dev. Corr

 dam sexFem 0.227304 0.47676

 sexMale 0.209747 0.45798 1.000

 sexUNK 0.296946 0.54493 1.000 1.000

102

 fosternest (Intercept) 0.066462 0.25780

 Residual 0.568052 0.75369

Number of obs: 828, groups: dam, 106; fosternest, 104

Fixed effects:

 Estimate Std. Error t value

(Intercept) -0.40616 0.06738 -6.028

sexMale 0.77018 0.05714 13.479

sexUNK 0.19936 0.12878 1.548

Correlation of Fixed Effects:

 (Intr) sexMal

sexMale -0.470

sexUNK -0.171 0.218

Now it’s sex on the left hand of | to tell R that we want sex-specific effects of

dams (or – how much variation in sexes is caused by dam effects; note that in some

cases sex is unknown – UNK – but we did not remove such data from the dataset). We

removed the intercept so that estimates will appear as sex-specific variances rather

than deviations from variance for females (alphabetically first level of sex). Resulting

(co)variance matrix is below; the order of columns and rows is alphabetical (females,

males, UNK).

> matrix(VarCorr(siksex)$dam,3,3)

 [,1] [,2] [,3]

[1,] 0.2273043 0.2183493 0.2598021

[2,] 0.2183493 0.2097471 0.2495668

[3,] 0.2598021 0.2495668 0.2969462

It seems that the degree of sex-specific variation is not large but formal test should be

used here. We could specify alternative (co)variance structures and compare models

using likelihood ratio test (anova()) – I’ll leave exploration to you. The only thing

worth noting is that sometimes (co)variance definitions are not straightforward; the

following table gives you most common ones with the way you could specify them in

either lmer or MCMCglmm.

You can see that fitting random interactions may more complicated than

writing A:B. Some of these interactions will become clearer in the next section, where

we’ll deal with multivariate mixed models. Also, note that in the left-hand side of | you

can have not only categorical variables but also continuous ones; in such a case

resulting (co)variance matrix will contain variances for random-effect specific

intercepts and slopes and possibly also covariances between them. For more details

please see the Advanced Issues section.

Speaking of MCMCglmm – fitting our blue tit model in MCMCglmm is a little bit

tricky. MCMCglmm is Bayesian-based and thus it requires some additional information

in form a prior. Prior is simply anything we know about our parameters (based on

103

experience or previous research) and we can use this information in our analyses.

Sometimes researchers are concerned that in Bayesian statistics we incorporate some

a priori information, possibly subjective. But fortunately we can use so-called non-

informative priors, where we assume that we know little a priori and want (nearly)all

the information to come from our data.

Table 9: Possible covariance structures in lmer and MCMCglmm (adapted from Hadfield 2010a)

lmer MCMCglmm (Co)variance Correlation

(1|dam) dam

(sex-1|dam) us(sex):dam

(1|sex:dam) sex:dam

(1|dam)+

(1|sex:dam)

dam+

sex:dam

- idh(sex):dam

- corh(sex):dam

- cor(sex):dam

 Priors or random are specified as lists, where there’s one element called R (for

residual variance) and (optionally, if needed), one or more elements called G1, G2, Gn

pooled inside a G element. G-elements provide priors for other random effects. Inside

every element we enter V (variance for our prior) and nu (so called belief parameter,

often written as simple n); it’s a good practise to set this parameter as (m-1)+0.001

to obtain non-informative prior, where m is the number of response variables and

104

hence the dimension of (co)variance matrix; the greater the n value, the more we

believe in the value V provided in the greater will be its influence on our results;

negative priors are possible, however they result in so called improper prior

distributions (essentially, not summing up to one) and should be used with care – I’ll

recommend reading Hadfield’s notes from MCMCglmm’s CRAN page for more detail

both on improper priors and on ways of setting the).

> prsik <- list(R=list(V=1,n=0.001),G=list(G1=list(V=1,n=0.001),

+ G2=list(V=1,n=0.001)))

> sikormc <- MCMCglmm(tarsus~sex, random=~fosternest+dam,

+ data=BTdata, prior=prsik, verbose=F)

> summary(sikormc)

 Iterations = 12991

 Thinning interval = 3001

 Sample size = 1000

 DIC: 1991.724

 G-structure: ~fosternest

 post.mean l-95% CI u-95% CI eff.samp

fosternest 0.06684 0.002443 0.1208 381.7

 ~dam

 post.mean l-95% CI u-95% CI eff.samp

dam 0.2251 0.1408 0.3245 1074

 R-structure: ~units

 post.mean l-95% CI u-95% CI eff.samp

units 0.5716 0.5151 0.6342 765.7

 Location effects: tarsus ~ sex

 post.mean l-95% CI u-95% CI eff.samp pMCMC

(Intercept) -0.4037 -0.5233 -0.2650 1000.0 <0.001 ***

sexMale 0.7705 0.6582 0.8846 1000.0 <0.001 ***

sexUNK 0.2133 -0.0189 0.4858 895.1 0.1

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Estimates of dam, fosternest and residual (here called units) variances are with good

agreement with those from lmer (up to Monte Carlo error). Some practise is needed

to interpret results from MCMCglmm. summary() provides confidence intervals for

variance estimates (G-structure and R-structure) and pMCMC values for fixed (location)

effects (interpreted as P values). We can visualise posterior distributions for fixed and

random effects:

105

> plot(sikormc)

Fig 27: Posterior distributions of random effects

Here I show only the last page of plots. Each left-hand side plot shows the trace of time

series (nr of iteration on x-axis and parameter values and y-axis) for random Monte

Carlo samplings from the posterior distribution, and right-hand side plots show these

estimated posterior distributions (as smoothed histograms). For all estimated

parameters.

You can also access specifically fixed effects (sikormc$Sol object) and

random variances (sikormc$VCV). Obtaining exact values of the expectations (mode

106

of the posterior distribution) and confidence intervals requires using special

functions:

> posterior.mode(sikormc$VCV)

fosternest dam units

0.05505678 0.21926275 0.57147922

> HPDinterval(sikormc$VCV)

 lower upper

fosternest 0.002442576 0.1207558

dam 0.140842844 0.3244714

units 0.515111574 0.6341997

attr(,"Probability")

[1] 0.95

One of great advantages of MCMC-based GLMMs is simplicity of using

posterior distributions. If we e.g. wanted to calculate proportion of variance explained

by dam effect – we can simply use whole distributions. Also – confidence intervals will

be calculated that way, which circumvents many difficulties and approximation issues

when calculating confidence interval for (co)variance ratios (e.g. heritabilities) in

REML-based algorithms. Here, the only thing we have to know is the exact position of

each random effect in VCV object (you can infer this from the above output; effects are

in columns ordered in the same way as their modes in posterior.mode output, i.e.

dam is in the second column):

> propdam <- sikormc$VCV[,2]/(sikormc$VCV[,1]+

+ sikormc$VCV[,2]+sikormc$VCV[,3]) #var for dams over sum of all vars

> posterior.mode(propdam)

 var1

0.2670148

> HPDinterval(propdam)

 lower upper

var1 0.1731281 0.3452775

attr(,"Probability")

[1] 0.95

Try to specify (using table with different random interaction definitions) the same

interactions we’ve examined in lmer(). Also, see if you can extract all the relevant

information (variances and covariances) from $VCV object.

Animal model

In a simple mixed model each random effect has it’s associated variance structure.

Generally we assume that different levels of the random effect are independent from

each other, and data within each level are identically distributed, implying

homoscedascity of variances (i.e. random effects are i.i.d. – independent and

107

identically distributed). In terms of a linear model parameters, random effects are

assumed to come from a multivariate normal distribution with mean 0 and defined

(co)variance structure, i.e. σR
2I (I is the identity matrix: I[i,j]=0 for i≠j and 1 gdy i=j).

However, in some cases we cannot assume independence of different levels of a

random effect, i.e. if we’re dealing with genotypes – the way they influence variability

in the response may depend on the extent of their genetic relatedness. Thus, we might

won’t substitute zeros in I using some measures if dependence; in the simplest case

we might use coefficients of relatedness. Thus we define such (co)variance structure

as σA
2A, where A is a square matrix with first two columns/rows for parents, the

remaining i-2 rows/j-2 columns for their offspring; A[i,j] is the relatedness coefficient

between i-th and j-th individual. This type of variance structure allows for estimating

additive genetic variance and narrow-sense haritabilities. In R – there’s currently one

well tested possibility of fitting animal models – the MCMCglmm package – and given its

versatility I wouldn’t suggest any other. Both glmmPQL and lmer (see Statistical

Modelling for details) can fit animal models, but it requires some additional steps with

defining (co)variance structures – which you can avoid in MCMCglmm by simply

providing your pedigree structure to the function. So unless you want use REML or

PQL for some special reasons, I recommend using MCMCglmm – especially in case of

non-gaussian data.

 We’ll begin with simple, normally distributed data: tarsus length of blue tits.

> data(BTdata)

> data(BTped)

 Look carefully at the structure of BTped file:

> head(BTped)

 animal dam sire

1 R187557 <NA> <NA>

2 R187559 <NA> <NA>

3 R187568 <NA> <NA>

4 R187518 <NA> <NA>

5 R187528 <NA> <NA>

6 R187945 <NA> <NA>

Important thing is that it contains all individuals (parents and offspring) in

the first columns, their mothers in the second column and its fathers in the third one.

As you can see – first individuals have no parents assigned – which is obvious as we

have some clearly defined first generation.

 Inside the MCMCglmm function we incorporate pedigree data using ped

argument. The list of random effects must also contain a special effect, with restricted

name animal:

108

> BTgen <- MCMCglmm(tarsus~sex, random=~animal+fosternest,

+ ped=BTped, data=BTdata, verbose=F)

Warning message:

In MCMCglmm(tarsus ~ sex, random = ~animal + fosternest, ped = BTped, :

 some combinations in animal do not exist and 212 missing records have been generated

Note that we did not use any priors – our data are well structured, with no

apparent imbalance and MCMCglmm can handle this analysis with its internally default

priors. Let’s see the results for random effects, mainly the genetic effect:

> posterior.mode(BTgen$VCV)

 animal fosternest units

 0.4542497 0.0824894 0.3676182

> HPDinterval(BTgen$VCV)

 lower upper

animal 0.286807024 0.6328057

fosternest 0.008939443 0.1284861

units 0.232745745 0.4435488

attr(,"Probability")

[1] 0.95

> plot(BTgen$VCV)

109

Fig 28: Random effects form an animal model

As you can see – animal explains a significant proportion of variance: its posterior

distribution lies well over the zero value. But the strict test of its significance can be

obtained only by using DIC:

> BTgen$DIC

[1] 1840.246

> BTnogen$DIC

[1] 2122.019

The DIC value for the genetic model is lower and thus – animal explains a

significant proportion of variance in tarsi. With this information we can easily proceed

to calculation of heritabilities. It simply requires adequate manipulation of posterior

distributions. Note, that here it’s important to provide correct column numbers for

successive random effects:

110

> h2tar <- BTgen$VCV[,1]/(BTgen$VCV[,1]+BTgen$VCV[,2]+BTgen$VCV[,3])

> posterior.mode(h2tar)

 var1

0.5641558

> HPDinterval(h2tar)

 lower upper

var1 0.3594623 0.680278

attr(,"Probability")

[1] 0.95

 Another genetic parameter of interest is genetic correlation. We can easily

estimate it using the same pedigree data – the only change is the use of appropriate

(co)variance functions and extension of our univariate model to a bivariate one. If –

for univariate model – the (co)variance structure is σR
2I, in the bivariate case it will be

V⊗I where V is a m×m square matrix (with m being the number of response

variables):

Once again, for the estimation of genetic correlations we define an additive genetic

effect a~ . Here essential is that default priors are univariate. Thus, to

proceed with the analysis we have to define m-variate priors (most often it will be just

a square diagonal matrix, hence providing variances equal to one and covariances

equal to zero). Remember to set the belief parameter to m-1+0.001 to obtain least

informative but still proper prior (but see Hadfield (2010b) on more specific

indication as to how to use belief parameters in complex covariance structures):

> prBT <- list(R=list(V=diag(2),n=1.001),

+ G=list(G1=list(V=diag(2),n=1.001),

+ G2=list(V=diag(2),n=1.001)))

Note, that we should have two elements in the G-structure because we have two

random factors beside the residual (R-structure).

 Calling the MCMCglmm – remember to deal with several things: (i) for each

random effect decide whether to fix trait-specific variances or just single variance for

pooled trait values; most often the former would be biologically more relevant and

correct; (ii) decide whether to fit random effect covariances between traits or fix them

to zeros; here you should use either idh() or us() variance functions, the former

assuming zero covariance, the latter estimating its precise value(s) – see below; (iii)

remember to use rcov argument to define appropriate residual (co)variance

111

structure; remember that if each individual was measured only in one trait – residual

covariance cannot be estimated and should be fixed at zero (which is common when

estimatin cross-sex rG or analysis genotype-by-environment interaction); still – you

should fit residuals as two trait-specific variances to allow for differences in σe
2

between traits; (iv) finally, use cbind() to pass both response variables to MCMCglmm.

Below we’ll look at the genetic correlation between tarsus length and back colour in

blue tits:

> BTgenr <- MCMCglmm(cbind(tarsus,back)~sex,

+ random=~us(trait):animal+us(trait):fosternest,

+ rcov=~us(trait):units, data=BTdata, ped=BTped,

+ verbose=F, nitt=50000, thin=100, burnin=10000,

+ prior=prBT, family=c('gaussian','gaussian'))

Warning message:

In MCMCglmm(cbind(tarsus, back) ~ sex, random = ~us(trait):animal + :

 some combinations in us(trait):animal do not exist and 212 missing records have been

generated

Since genetic covariance isn’t constrained by zero lower boundary it’s test using

confidence interval will be valid. Alternatively me might use DIC to compare our

model with the in which we define animal as idh(trait):animal, hence preventing

covariance from being estimated. Here we’ll proceed with confidence-based test:

> HPDinterval(BTgenr$VCV)

 lower upper

tarsus:tarsus.animal 0.28878224 0.66357759

back:tarsus.animal -0.20459648 0.01906264

tarsus:back.animal -0.20459648 0.01906264

back:back.animal 0.09297079 0.31168575

tarsus:tarsus.fosternest 0.07671264 0.20046810

back:tarsus.fosternest -0.00864343 0.09907748

tarsus:back.fosternest -0.00864343 0.09907748

back:back.fosternest 0.08682076 0.22635957

tarsus:tarsus.units 0.25140748 0.47979075

back:tarsus.units -0.10522497 0.05454153

tarsus:back.units -0.10522497 0.05454153

back:back.units 0.63802316 0.85200243

attr(,"Probability")

[1] 0.95

> posterior.mode(BTgenr$VCV)

 tarsus:tarsus.animal back:tarsus.animal

 0.41552815 -0.05264475

 tarsus:back.animal back:back.animal

 -0.05264475 0.17940797

tarsus:tarsus.fosternest back:tarsus.fosternest

 0.11540324 0.04211067

 tarsus:back.fosternest back:back.fosternest

 0.04211067 0.13240551

 tarsus:tarsus.units back:tarsus.units

 0.34843877 -0.03127438

 tarsus:back.units back:back.units

112

 -0.03127438 0.74120317

Genetic covariance for analysed traits (tarsus:back.animal or

back:tarsus.animal) is negative and its confidence interval does overlap zero.

Thus, we conclude that it is not significantly different from zero and we might as well

use idh() covariance structure. Check that it’s the case also for other random effects.

 Calculation of genetic correlation is as straightforward as it was in case of

heritability. Putting appropriate (co)variance parameters into the formula for rG

(covariance divided by square root of variances’ product) allows for its calculation.

We obtain a complete posterior distribution of rG allowing for easy construction of

confidence intervals and hypothesis testing:

> posterior.mode(rG)

 var1

-0.232888

> HPDinterval(rG)

 lower upper

var1 -0.6142401 0.06382528

attr(,"Probability")

[1] 0.95

Once again, although tarsus and back colour seem to be negatively correlated at the

genetic level, this correlation is not significantly different from zero.

Here important thing should be emphasized. In case of different traits, the H0

should be that rG=0; also, we should always fit bot variances, i.e. use either us() or

idh(). However, when testing for rG in one trait but in different sexes or

environments (hence, testing for genotype-by-sex or –environment interactions) we

should rather test two different hypotheses: H01: rG=1 (as could be expected due to

shared genetic background of our individuals) and H02: σ1
2= σ2

2. Here, when the

former fails to be rejected, we could use idh() or us(), but when both are accepted –

simple univariate specification should be used, assuming equal variances and

covariance one. Importantly – there’s no simple way of constraining our (co)variance

structure so that genetic correlations where equal to one; it’s possible by use of sir()

in so called simultaneity and recursion analysis in MCMCglmm but I’ll not cover this

here (the problem is due to the character of rG – if it’s equal to zero, covariance is also

fixed at zero; but for rG=1 – there’s no unique value of covariance satisfying this

equality and rather it depends on the values of variances).

113

Correlations in non-gaussian data

Real power of MCMCglmm pops out when dealing with non-normal data. MCMC deals

with such data much better than REML – both simulations and mathematical

considerations confirm that estimates of random effects are much more reliable in

reasonably designed MCMC analyses. As an example we’ll go through estimating

genetic effects in two traits: oxidase activity (one of immune system branches) and

virus resistance (measured as probability of pupation). Data come from an experiment

on Indian meal moth (Plodia interpunctella) exposed to its specific granulosis virus,

PiGV (Tidbury & Boots, unpublished data). Several difficulties arise in such data

(Hadfield 2010b): (i) resistance is measured by probability of pupation (i.e. data

points are 1 for pupated larvae and 0 for unpupated larvae) and hence follow binomial

distribution in which residual variance cannot be estimated – it’s a quadratic function

of the mean; as pointed in the previous chapter, overdispersion often arises in such

data; (ii) both traits have different distributions (binomial and Gaussian) which is

difficult to handle in most modelling packages if we’d like to estimate rG; (iii)

measuring oxidase activity kills an individual thus preventing it from pupating – so

none can be measured in the same trait (residual covariance cannot be estimated).

 Measuring genetic effects in our data set won’t require pedigree file – here,

each individual has assigned family from which it comes from. In this case individuals

are full-sibs, sharing 50% of their genes. Multiplying estimates of proportion of family

variance in the overall variance should thus give us approximate estimation of

heritability – although it will be broad-sense heritability since we cannot be sure that

– excluding additive genetic effects - no other factors influence variability among

families. However, since in binomial data residual variance cannot be estimated,

family effects will constitute the only source of variation in random effects. Described

way of calculating H2 will be possible only for oxidase-trait. Try fitting such model by

yourself.

We can however look at some approximation of genetic effects, as expressed

by family effect. Let’s start with simple estimation of family effect in pupated/not-

pupated trait:

> data(PlodiaPO)

> data(PlodiaR)

> data(PlodiaPR)

> plobin <- MCMCglmm(cbind(Pupated,Infected)~1,

+ family="multinomial2", data=PlodiaR, verbose=F)

114

As mentioned before – residual variance cannot be estimated here. Moreover

– since data are counts in families, family effects would be confounded with residuals.

Thus we’ve decided to exclude FSfamily from analyses. Obviously (recall our models

in the previous chapter for Poisson data) this will cause overdispersion (it will be put

into units) – and since we know the source of this overdispersion, we can simply take

residual variance as the estimate of family effect. Plotting this variance shows it’s

considerable:

> plot(plobin$VCV)

Fig 29: Residual variance from simple Plodia model

Here we’ve used multinomial2 as the distribution family. However, we could express

our data not as counts in families but as 0/1 data for single individuals. In such case

we would have a special case of binomial data, where only one “object” is sampled in

every trial (as in PlodiaRB). For such data, family categorical is appropriate:

> prplob <- list(R=list(V=1,n=0,fix=1),G=list(G1=list(V=1,n=0.001)))

> plocat <- MCMCglmm(Pupated~1, random=~FSfamily,

+ family="categorical", data=PlodiaRB, prior=prplob,verbose=F)

Here we can estimate separately FSfamily – now it won’t be confounded with

residuals (we have several individuals in each family). However, we still cannot

estimate residual variance. Thus, we are fixing this variance using fix in our prior.

Try exploring the results on your own.

115

 As for family-level correlation between two traits we’ve considered so far – it

should now be quite simple. We should remember to use proper distribution. First

however, we should merge the data on oxidase activity and pupation together by

generating for all individuals that were measured in one trait NA – remember they

cannot be measured in both traits:

> PlodiaPO$ID <- 1:dim(PlodiaPO)[1]

> PlodiaRB$ID <- dim(PlodiaPO)[1]+1:dim(PlodiaRB)[1]

> PlodiaRBPO <- merge(PlodiaPO,PlodiaRB,all=T)

We should use prior that will be bivariate (2×2 square matrices) and that will fix

proper residual variances (Hadfield 2010b):

> prplor <- list(R=list(V=diag(2),n=0,fix=1),

+ G=list(G1=list(V=diag(2),n=1.001)))

> plorg <- MCMCglmm(cbind(Pupated,PO)~trait-1,

+ random=~us(trait):FSfamily, rcov=~idh(trait):units,

+ family=c("categorical","gaussian"),data=PlodiaRBPO,

+ prior=prplor, verbose=F)

> rG <- plorg$VCV[,2]/sqrt(plorg$VCV[,1]*plorg$VCV[,4])

> plot(rG)

Fig 30: Family-level correlation in Plodia analysis

It seems that – at the family level – both traits are not correlated.

116

117

118

Part 7 ~ (Very brief) introduction to

multivariate methods

Multivariate statistics serves as a tool for exploring structures in your data. It does not

test any particular hypotheses – it rather lets you look into your data for patterns and

structuring. It is important to use multivariate statistical methods described here only

when you know exactly what you’re doing. It is tempting to put your data into some

complex algorithms and get some tricky outputs. But only when you know the aim of

your analyses you will be able to extract the most of them.

Principal Component Analysis

PCA is a way of seeking for correlations in explanatory variables. It is designed to look

for a set of standardized orthogonal (independent) linear combinations of the

variables that explain all the variation in our data set. In other words, all variation in

our predictors is turned into a set of n (n – number of variables) principal

components. Most often first two-three components explain most of the variation.

Here we’ll try to extract variation components from an experiment where on 89 plots

54 plants were quantitatively examined (see Crawley 2010). Before doing PCA we

must remove several continuous variables not associated with these species

measurements:

> gatdane <- read.table(“pgfull.txt”,head=T)

> names(gatdane)

 [1] "AC" "AE" "AM" "AO" "AP" "AR” "AS" "AU"

 [9] "BH" "BM" "CC" "CF" "CM" "CN" "CX" "CY"

[17] "DC" "DG" "ER" "FM" "FP" "FR" "GV" "HI"

[25] "HL" "HP" "HS" "HR" "KA" "LA" "LC" "LH"

[33] "LM" "LO" "LP" "OR" "PL" "PP" "PS" "PT"

[41] "QR" "RA" "RB" "RC" "SG" "SM" "SO" "TF"

[49] "TG" "TO" "TP" "TR" "VC" "VK" "plot" "lime"

[57] "species" "hay" "pH"

> gat<-gatdane[,1:54]

We then use the whole dataset as an input to PCA. Here we have to scale our data to

equalize variances in different predictors:

> pcagat <- prcomp(gat,scale=T)

> summary(pcagat)

Importance of components:

 PC1 PC2 PC3 PC4 PC5 PC6

119

Standard deviation 3.005 2.336 1.9317 1.786 1.7330 1.5119

Proportion of Variance 0.167 0.101 0.0691 0.059 0.0556 0.0423

Cumulative Proportion 0.167 0.268 0.3373 0.396 0.4520 0.4943

 PC7 PC8 PC9 PC10 PC11 PC12

Standard deviation 1.5088 1.3759 1.3244 1.273 1.2195 1.1979

Proportion of Variance 0.0422 0.0351 0.0325 0.030 0.0275 0.0266

Cumulative Proportion 0.5365 0.5716 0.6040 0.634 0.6616 0.6882

 PC13 PC14 PC15 PC16 PC17 PC18

Standard deviation 1.1723 1.1355 1.0931 1.0678 1.0057 0.9550

Proportion of Variance 0.0254 0.0239 0.0221 0.0211 0.0187 0.0169

Cumulative Proportion 0.7136 0.7375 0.7596 0.7807 0.7995 0.8164

 PC19 PC20 PC21 PC22 PC23 PC24

Standard deviation 0.9185 0.8947 0.8644 0.8497 0.7690 0.7513

Proportion of Variance 0.0156 0.0148 0.0138 0.0134 0.0109 0.0104

Cumulative Proportion 0.8320 0.8468 0.8606 0.8740 0.8850 0.8954

 PC25 PC26 PC27 PC28 PC29

Standard deviation 0.7419 0.70653 0.69475 0.67325 0.62565

Proportion of Variance 0.0102 0.00924 0.00894 0.00839 0.00725

Cumulative Proportion 0.9056 0.91485 0.92379 0.93218 0.93943

 PC30 PC31 PC32 PC33 PC34

Standard deviation 0.56800 0.56269 0.53857 0.52670 0.49524

Proportion of Variance 0.00597 0.00586 0.00537 0.00514 0.00454

Cumulative Proportion 0.94540 0.95127 0.95664 0.96177 0.96632

 PC35 PC36 PC37 PC38 PC39

Standard deviation 0.48706 0.46638 0.44471 0.402 0.37661

Proportion of Variance 0.00439 0.00403 0.00366 0.003 0.00263

Cumulative Proportion 0.97071 0.97474 0.97840 0.981 0.98403

 PC40 PC41 PC42 PC43 PC44

Standard deviation 0.35794 0.34381 0.31452 0.29639 0.26849

Proportion of Variance 0.00237 0.00219 0.00183 0.00163 0.00133

Cumulative Proportion 0.98640 0.98859 0.99042 0.99205 0.99338

[clipped…]

First PC explains over 16% of total variability in our predictors. Next one

explains over 10%. To see relative contributions you can use so called cliff-plot

(consecutive bars indicate percentages of total variance explained by respective PCs):

> plot(pcagat)

120

Fig 31: Cliff-plot

An usual way of expressing PCA analysis is a biplot. Here, each explanatory

variables is represented by an arrow on the plane (or in the space) built on several

(usually two – PC1 and PC2 – and thus plane) components. Lengths and directions of

arrows indicate the magnitude and sign of contribution of each predictor (so called

load) to the considered PCs:

> biplot(pcagat)

121

Fig 32: A biplot

Here, for instance, species AP, AE and HS have large, positive influence on the

first (x-axis) PC. You can actually see how this “new” predictor (PC1) correlates with

our response variables, e.g. with hay mass:

> plot(predict(pcagat)[,1],gatdane$hay,xlab="PC1",ylab="hay")

122

Fig 33: Using PC in further analyses

Factor analysis

Sometimes you’re not interested in building some artificial variables but rather want

to see how your measured variables contribute to some broader, unmeasured (or

unmeasurable) variables, such as intelligence, fitness etc. Here you specify how many

compound variables you’d like to have (and these are called factors). Let’s analyse the

same dataset, this time we’ll aim at searching for eight factor variables:

> factanal(gat,8)

Call:

factanal(x = gat, factors = 8)

Uniquenesses:

 AC AE AM AO AP AR AS AU BH BM CC

0.638 0.086 0.641 0.796 0.197 0.938 0.374 0.005 0.852 0.266 0.056

 CF CM CN CX CY DC DG ER FM FP FR

0.574 0.786 0.579 0.549 0.733 0.837 0.408 0.072 0.956 0.371 0.815

 GV HI HL HP HS HR KA LA LC LH LM

0.971 0.827 0.921 0.218 0.332 0.915 0.319 0.305 0.349 0.333 0.927

 LO LP OR PL PP PS PT QR RA RB RC

123

0.121 0.403 0.005 0.286 0.606 0.336 0.401 0.913 0.491 0.005 0.754

 SG SM SO TF TG TO TP TR VC VK

0.341 0.212 0.825 0.428 0.476 0.469 0.309 0.611 0.651 0.170

Loadings:

 Factor1 Factor2 Factor3 Factor4 Factor5 Factor6 Factor7 Factor8

AC -0.512 -0.268 0.121

AE 0.925 -0.107 -0.146 -0.118

AM -0.206 0.413 0.213 0.163 0.115 0.153 0.186

AO -0.312 -0.196 -0.151 -0.105 -0.148 -0.102

AP 0.827 -0.173 -0.195 -0.167 -0.123

AR 0.150 0.111 0.127

AS 0.778

AU 0.996

BH 0.380

BM -0.116 0.292 0.695 0.380

CC -0.152 0.159 0.943

CF 0.539 0.342

CM 0.434 -0.110

CN -0.276 0.143 0.541 0.147

CX 0.628 0.169 0.146

CY -0.211 -0.162 0.340 0.270

DC -0.125 0.372

DG 0.738 -0.127 0.145

ER 0.960

FM -0.108 0.133

FP 0.245 0.226 0.478 0.493 -0.176

FR -0.386 -0.144

GV -0.134

HI -0.202 -0.129 -0.163 0.182 0.216

HL -0.157 -0.127 -0.139

HP -0.155 0.832 0.240

HS 0.746 -0.102 0.257 -0.152

HR -0.155 -0.107 -0.122 0.101 0.150

KA -0.167 0.774 -0.169 0.139

LA 0.829

LC -0.306 0.378 -0.125 0.529 0.328

LH -0.256 0.556 -0.132 0.421 0.223 0.195

LM 0.112 0.221

LO -0.129 0.432 0.781 0.251

LP 0.115 0.745

OR 0.996

PL 0.369 0.675 0.337

PP 0.527 0.226 -0.167 -0.175

PS -0.212 0.301 -0.130 0.681 0.150 0.158

PT 0.741 -0.100 0.150 -0.105

QR -0.194 -0.135

RA 0.195 0.227 0.578 0.205 -0.166 -0.107

RB -0.122 0.158 0.272 0.934

RC 0.361 -0.198 -0.176 -0.152

SG 0.806

SM 0.388 0.787

SO -0.100 0.386

TF 0.702 0.260

TG 0.141 0.583 -0.110 0.367 0.107

TO 0.418 0.567 -0.158

TP 0.818

TR 0.141 0.306 0.238 0.458

VC 0.403 0.246 0.309 -0.169

124

VK 0.909

 Factor1 Factor2 Factor3 Factor4 Factor5 Factor6

SS loadings 5.840 3.991 3.577 3.540 3.028 2.644

Proportion Var 0.108 0.074 0.066 0.066 0.056 0.049

Cumulative Var 0.108 0.182 0.248 0.314 0.370 0.419

 Factor7 Factor8

SS loadings 2.427 2.198

Proportion Var 0.045 0.041

Cumulative Var 0.464 0.505

Test of the hypothesis that 8 factors are sufficient.

The chi square statistic is 1675.57 on 1027 degrees of freedom.

The p-value is 5.92e-34

Although this output seems complex, you can easily see that, for example, AE, AP, AS

have positive contribution to the first factor, and AC, AO, FR have negative

contributions; take character of these species, the first factor serves as a measure for

the type of grassland (Crawley, 2010). Other factors also have clear biological

interpretations (see commentary during the class). Remember that the number of

parameters estimated (loadings for factors from different predictors) is 54 in factor

analysis (the number of variables) and not 89 (the number of cases) as in PCA.

Cluster analysis

In cluster analysis the task is too look for any structuring in our data. We can look for

clusters of similar objects using several methods – mainly, we can either build our

structure starting from single individuals or divide all observations among groups.

The simplest method works by fitting specified number of groups in our data in such

way that the sum of squared Euclidean distances from the centres of these groups is

minimized inside and across all groups. Well analyse a sample data where we have

two variables and wish to see if they’re structured in their 2-dimendional data space.

As comparison, we’ll look at actual structuring of these data indicated in the group

column:

> klastr<-read.table("kmeansdata.txt", sep="\t", head=T)

> par(mfrow=c(2,2))

> with(klastr,plot(x,y,pch=16))

> with(klastr,plot(x,y,pch=16,col=group))

> klmod <- kmeans(klastr[,-3],6)

> with(klastr,plot(x,y,pch=16,col=klmod[[1]]))

> klmod <- kmeans(klastr[,-3],4)

> with(klastr,plot(x,y,pch=16,col=klmod[[1]]))

> par(mfrow=c(1,1))

125

Fig 34: Raw data (upper left), correct clustering (upper right)

and two estimated clustering patterns (lower)

Here, we’ve plotted two plots for original data, one monochromatic, and one with a

priori groups indicated. Two other plots are based on structuring as inferred from

kmeans function for 4 and 6 clusters predefined. As you can see, structuring is

apparent but several mistakes have been made. We can actually look at the precision

by comparing structuring we know with this inferred in R:

> klmod <- kmeans(klastr[,-3],6)

> table(klmod[[1]],klastr$group)

 1 2 3 4 5 6

 1 0 8 0 0 5 0

 2 0 0 0 0 0 24

 3 20 0 0 17 0 0

 4 0 0 25 1 0 0

 5 0 0 0 2 25 0

 6 0 17 0 0 0 1

Now it’s obvious that there are no mistakes in the first cluster (all 20 objects were

correctly classified in it by classifying function) but for instance 5 objects from original

5th cluster were assigned to the 1st cluster (look at the 5th column). In general, this

126

method may not be precise, especially when one does not have any hints as to how

many clusters to specify.

It’s common to use clustering in taxonomic analyses. Here we’ll try to assess

usefulness of several morphological features in separating measured individuals in

several taxa (Crawley, 2010). Here, we’re in a convenient situation since we know we

should have four taxa – hence, we know how many clusters we should specify.

> taxa<-read.table("taxon.txt",head=T)

> names(taxa)

[1] "Petals" "Internode" "Sepal" "Bract" "Petiole"

[6] "Leaf" "Fruit"

> pairs(taxa)

Looking at the pairwise correlation matrix (Fig. 34) indicates that at least two

traits (Sepals and Petioles) should be useful in separating taxa. Let’s see how

clustering works here. We know, that in our data-frame there are 30 taxa and they’re

arranged one over another so we have consecutive 30s of species’ data. It will allow us

to look at the precision of this method:

> taxakl <- kmeans(taxa,4)

> taxateo <- rep(c(1,2,3,4),each=30)

> taxateo

 [1] 1 2

 [32] 2 3 3

 [63] 3 4 4 4

 [94] 4

> table(taxakl[[1]],taxateo)

 taxateo

 1 2 3 4

 1 9 1 8 10

 2 0 13 5 0

 3 2 11 10 19

 4 19 5 7 1

127

Fig 35: Pair-wise scatter plots for morphological traits

Although clustering works, it is fairly accurate. This would look even worse if we did

not have the number of candidate taxa and used some other guesses. Is it any way

around? Actually – there is and it’s called regression trees. Let’s look at this from the

opposite end – it is when we have the right classification of our taxa (Crawley 2010;

we’ll use alternative dataset here):

> taxa<-read.table("taxonomy.txt",head=T)

> modkey1 <- tree(Taxon~.,taxa)

> plot(modkey1)

> text(modkey1)

128

Fig 36: Regression tree for morphological clustering off species

As you can see – our 4 taxa can be fairly separated using several

morphological features – and more important, we could build a simple dichotomous

key for these plants. Actually, the raw form of such key can be obtained using built-in

printing function:

> print(modkey1)

node), split, n, deviance, yval, (yprob)

 * denotes terminal node

1) root 120 332.70 I (0.2500 0.2500 0.2500 0.2500)

 2) Sepal < 3.53232 90 197.80 I (0.3333 0.3333 0.3333 0.0000)

 4) Leaf < 2.00426 60 83.18 I (0.5000 0.5000 0.0000 0.0000)

 8) Petiole < 9.91246 30 0.00 II (0.0000 1.0000 0.0000 0.0000) *

 9) Petiole > 9.91246 30 0.00 I (1.0000 0.0000 0.0000 0.0000) *

 5) Leaf > 2.00426 30 0.00 III (0.0000 0.0000 1.0000 0.0000) *

 3) Sepal > 3.53232 30 0.00 IV (0.0000 0.0000 0.0000 1.0000) *

129

We can also use some useful feature of tree models to visualize partitioning of our

traits in some phase-space of candidate traits (adapted from Crawley, 2010). Here

we’ll depict our taxa in the 2D phase-space of two traits (most important ones) – Sepal

and Leaf:

> modkey2 <- tree(Taxon~Sepal+Leaf,taxa)

> partition.tree(modkey2)

> attach(taxa)

> label<-ifelse(Taxon=="I","a",ifelse(Taxon=="II","b",

+ ifelse(Taxon=="II","c","d")))

> text(Sepal,Leaf,label)

Fig 37: Phase-space for two most efficient separating traits

What we did here is we built a tree-model in a two-dimensional space of two

trait-values and depicted our data in this space by “clusters” for each taxon (Crawley

2010). Additionally, we labelled each point with a letter to visualize how well our data

fit this clustering. You can see that it is almost perfect separation of 3rd and 4th taxa,

but 1st and 2nd are mixed. It’s reasonable since they’re separated by the Petiole

lengths. Now – imagine running the same tree model in reverse, without prior

knowledge of taxa. It would of course require some more attention and inspection of

130

results but eventually you would find your way to correct traits that separate your

data into taxa.

Hierarchical clustering

You’ve probably encountered pretty trees in hundreds of scientific papers. They

depicted different kinds of hierarchical dependencies – and had in common one thing:

they depicted in a hierarchical manner growing degree of similarity between some

units as we climb up the hierarchy. Hierarchical clustering works by using some

measures of geometric distance to cluster data units (individuals, species, etc.) into

some more general units. Generalising up and up we get tree-like structure describing

patterning in our data.

 In R there are several “treeing” functions. Here we’ll use the simplest one and

analyse the data on plant communities you’ve encountered in PCA and FA (first two

subchapters). To be able to effectively analyse those data we will first extract some

labels identifying all units (plots) uniquely. Then, using our 54 predictors variables,

we’ll calculate pairwise distances between all possible cases (plots).

> etyk <- paste(gatdane$plot,letters[gatdane$lime],sep="")

> etyk

 [1] "1a" "1b" "1c" "1d" "2.1a" "2.1b" "2.1c"

 [8] "2.1d" "3a" "3b" "3c" "3d" "4.1a" "4.1b"

[15] "4.1c" "4.1d" "4.2a" "4.2b" "4.2c" "4.2d" "6a"

[22] "6b" "7a" "7b" "7c" "7d" "8a" "8b"

[29] "8c" "8d" "9.1a" "9.1b" "9.1c" "9.1d" "9.2a"

[36] "9.2b" "9.2c" "9.2d" "10a" "10b" "10c" "10d"

[43] "11.1a" "11.1b" "11.1c" "11.1d" "11.2a" "11.2b" "11.2c"

[50] "11.2d" "12a" "12b" "12c" "12d" "13.2a" "13.2b"

[57] "13.2c" "13.2d" "14.1a" "14.1b" "14.1c" "14.1d" "14.2a"

[64] "14.2b" "14.2c" "14.2d" "15a" "15b" "15c" "15d"

[71] "16a" "16b" "16c" "16d" "17a" "17b" "17c"

[78] "17d" "18.1a" "18.1b" "18.1c" "18.1d" "18.2a" "19.1c"

[85] "19.2a" "19.3b" "20.1c" "20.2a" "20.3b"

> drzewo <- hclust(dist(gatdane[,1:54]))

> plot(drzewo,labels=etyk)

Looking carefully through the tree (next page) and the data – you can see that this

analysis clustered our data in such a way that similar plant communities were placed

together, as explained in more detail during the class.

131

132

133

Advanced Issues
Szymon Drobniak

Jarrod Hadfield

134

Note

Topics presented below are selected and adapted from the workshop on advanced

methods in mixed models implemented in R, that took place in January 2011 in the

Evolutionary Biology Centre, University of Uppsala. Complete data files and complete

scripts containing relevant R code are available on the website of this book (see

Preface). Please note, that these subjects are more advanced than problems in the first

part of this book. Also, the style of the remaining sections is somehow different, with

less off-code narration and more inline comments (indicated by the leading # sign). In

order to facilitate using these notes code blocks are identified with their unique

numbers, which are the same as blocks’ IDs in the R scripts available online.

 In case you have executed library(NAME) and received error message saying

that you have not the required package, remember to (re)install it using

install.packages(NAME).

135

Part A ~ Likelihood and Bayesian

statistics

Seeing the invisible – likelihoods and posteriors

Maximum likelihood estimators are common in classical statistics. For instance,

arithmetic mean, OLS estimates of regression coefficients – all are in fact estimators

that maximize the likelihood of data given particular values of parameters, i.e.

max(P(y|par)). In general situations as considered here this likelihood is proportional

to the product of probability densities of the data given particular values of

parameters:

L(par|y) ~ Πi P(y|pari)

 In this part we’ll play with simple simulated Gaussian data and see how

simple maximum likelihood estimation works. We’ll learn how to use optimizing

functions of R (which some of you may find useful in other applications) and how to

produce multivariate graphs of likelihood surfaces.

First – we’ll simulate simple normal data (10 observations) and see how do

they look like in terms of the distributions they were taken from (after Hadfield

2010b). Likelihoods may be tricky and as you’ll see – the likelihood of our data may be

higher for different (!) parameters than those we’ll use to simulate them. Note that

since our data are sampled randomly you may obtain entirely different results that

those presented below.

> ###code block 1

> dataG <- data.frame(y = rnorm(10,mean=0,sd=sqrt(1)))

> dataG$y

 [1] -0.2079101 -1.1445615 -0.0656215 -0.6294617 0.5422668

 [6] 0.7025364 0.7627269 0.1905778 1.6687900 2.0852642

> yscale <- seq(-3,3,0.1) #possible values of y for the plot

> Prob<-dnorm(yscale,mean=0,sd=sqrt(1)) #pdf

> plot(Prob~yscale,type="l")

> Prob.y <- dnorm(dataG$y, mean=0, sd=sqrt(1))

> points(Prob.y~dataG$y)

> L <- prod(Prob.y) #likelihood

> L

136

[1] 5.94403e-07

>

> Lalt <- prod(dnorm(dataG$y,mean=0,sd=sqrt(0.5)))

> Lalt

[1] 1.107162e-07

> plot(dnorm(yscale,0,sqrt(0.5))~yscale,type="l")

> lines(Prob~yscale,col="red")

> points(Prob.y~dataG$y,col="red")

> points(dnorm(dataG$y,0,sqrt(0.5))~dataG$y)

Fig 38: Sampled data superimposed on two normal distributions;

the red one is the true one

 As you can see – the likelihood of our data is higher under different set of

parameters and it’s apparent from the plot (3 points of the black curve, generated

using parameters different than those used for generating data, lie over the red,

theoretically proper, curve). In order to fully understand what’s happening we should

evaluate the likelihood on the grid of possible parameters. Here we’ll use simple loop

137

to iterate through the space of our parameters (mean and variance) to calculate

possible values of L and then we’ll plot them as a flattened perspective plot (contours).

Be aware that each of you has slightly different values in you simulated data (in

rnorm ‘r’ means random!) and you’ll probably have to rescale your plots so that they

could contain whole likelihood surface (to do this just play with the first two

parameters in two commands in the frame below):

> ###code block 2

>

> x=seq(-1,1,0.05)

> y=seq(0,2,0.05)

> z=matrix(numeric(length(x)*length(y)),c(length(x),length(y)))

>

> for (i in 1:length(x)) {

+

+ for (j in 1:length(y)){

+

+ z[i,j]=prod(dnorm(dataG$y,mean=x[i],sd=sqrt(y[j])))

+ }

+ }

>

> z<-z/max(z)

> contour(x,y,z,nlevels=10,xlab="mean",ylab="variance")

138

Fig 39: Contour representation of the likelihhod surface

Importantly we don’t have to rely on visual inspection looking for ML

estimator. We can use R built-in features designed for searching for functions maxima

and minima. In such case you should define your maximized/minimized function (in

our case (loglik) it will be the likelihood which is the product – or, on the log scale,

the sum – of (logged) probability densities). In the optimizing routine you have to

specify starting parameters (which may be our assumed parameters of the

distribution; these will be coordinates of the space in which optimization will be done

– you can locate them as the first argument in optim) – they have to be of the same

number as parameters in the optimized function; you also have to provide all

variables that are in the optimized function (here it’s only y). Other arguments are: fn

(defines the optimized function) and control (provides control parameters, such as

fnscale (it multiplies the minimized function by -1, effectively maximizing it) or

reltol (it sets the threshold for stopping the optimizing routine and deciding that the

actual optimum has been reached). We’ll compare our optimum with the estimates of

a linear model (which uses REML instead of ML).

> ###code block 3

139

> loglik <- function(pars,y) {

+ sum(dnorm(y,pars[1],sqrt(pars[2]),log=TRUE))

+ }

>

> ML <- optim(c(mean=0,v=1),fn=loglik,y=dataG$y,

+ control=list(fnscale=-1,reltol=1e-16))

> ML$par

 mean v

0.3904607 0.8768050

> REML <- glm(y~1,data=dataG)

> summary(REML)

Call:

glm(formula = y ~ 1, data = dataG)

Deviance Residuals:

 Min 1Q Median 3Q Max

-1.53502 -0.56280 -0.02404 0.35722 1.69480

Coefficients:

 Estimate Std. Error t value Pr(>|t|)

(Intercept) 0.3905 0.3121 1.251 0.242

(Dispersion parameter for gaussian family taken to be 0.9742278)

 Null deviance: 8.768 on 9 degrees of freedom

Residual deviance: 8.768 on 9 degrees of freedom

AIC: 31.064

Number of Fisher Scoring iterations: 2

> #REML estimator is better (the bias is smaller by

> #factor of n/n-1)

> ML$par["v"]*(10/9)

 v

0.9742278

Combining likelihood and prior knowledge

What’s unique for Bayesian analysis is that we consider parameters as random rather

than fixed and we use some knowledge about these parameters to estimate their

values. In other words, the posterior probability of observing parameters of a given

value depends both on the likelihood of the data of given these parameters and our

prior knowledge about them:

P(par|y) ~ L(par|y)P(par) ~ P(y|par)P(par)

 Diverse distributions could be used in the Bayesian framework to define

priors but in our analyses we’ll use two of them. Priors for fixed effects are defined

using normal distribution with mean zero and very large (>1e+06) variance, making

such prior essentially flat and uninformative. For (co)variances we use inverse

140

Wishart distribution (IW) which is slightly problematic for multivariate (co)variance

structures (and we’ll come back to them later). For simple variances IW is defined by

two parameters: variance – V and belief parameter – nu. When belief goes to infinity,

the distribution tends to a mode equal to V. In general the mode of the distribution is

(V*nu)/nu+2. In R we can model IW using inverse gamma distribution (e.g. function

dinvgamma) with parameters: shape=nu/2 and scale=nu*V/2). Care is needed

to ensure that the prior is proper (integrates to one as an ordinary distribution) and

this condition holds for single variance components when V>0 and nu>0. When nu≤0

we get improper prior which – although difficult – may be useful (as we’ll see later;

Hadfield, 2010b).

 Here we’ll combine our likelihood function with prior densities to see how

such estimates work compared to ML. First we’ll define function for calculating prior

probability for given values of parameters, then we’ll combine these with likelihood

and use to estimate values of the parameters. Since we’re working on the log scale, it’s

summing and not multiplying that we’ll employ.

> ###code block 4

>

> library(MCMCpack)

Loading required package: MASS

Markov Chain Monte Carlo Package (MCMCpack)

Support provided by the U.S. National Science Foundation

(Grants SES-0350646 and SES-0350613)

> logprior <- function(pars,priorR,priorB) {

+ dnorm(pars[1],mean=priorB$mu,sd=sqrt(priorB$V),log=T)+

+ log(dinvgamma(pars[2],shape=priorR$nu/2,

+ scale=(priorR$nu*priorR$V)/2))

+ }

> prior <- list(R=list(V=1,nu=0.002),B=list(mu=0,V=1e+08))

> loglikprior <- function(pars,y,priorR,priorB) {

+ loglik(pars,y)+logprior(pars,priorR,priorB)

+ }

> Bayes <- optim(c(mean=0,v=1),fn=loglikprior,y=dataG$y,

+ priorR=prior$R,priorB=prior$B,

+ control=list(fnscale=-1,reltol=1e-16))

> x=seq(-1,1,0.05)

> y=seq(0,2,0.05)

> z1=matrix(numeric(length(x)*length(y)),c(length(x),length(y)))

141

> for (i in 1:length(x)) {

+

+ for (j in 1:length(y)){

+

+ z1[i,j]=exp(loglikprior(c(x[i],y[j]),

+ dataG$y,prior$R,prior$B))

+ }

+ }

> #z2<-z1/max(z1) sometimes does not work as NaNs are produced

> contour(x,y,z,nlevels=10,xlab="mean",ylab="variance")

> contour(x,y,z1,nlevels=10,xlab="mean",ylab="variance",

+ add=T,col="red")

Fig 40: Likelihood surface (larger in black) and the same combined with the prior (smaller in red)

 As you can see – variance estimates using prior are even more downwardly

biased – which is caused by the fact that simple optimization of the L*prior ignores

uncertainty of the mean estimate (Hadfield, 2010b). We can however integrate our

142

bivariate distribution along the mean scale to get the posterior for variance, which

would take uncertainty in mean into account:

Important advantage of MCMC-based methods is that analytically it’s most often

impossible to get the posterior marginal distribution of a parameter.

> ###code block 5

> contour(x,y,z1,nlevels=10,xlab="mean",ylab="variance",

+ col="red")

> library(MCMCglmm)

> m1 <- MCMCglmm(y~1,data=dataG,prior=prior,thin=1,nitt=30000,

+ verbose=F)

> points(cbind(m1$Sol,m1$VCV),pch=".")

143

Fig 41: ML combined with the prior (lines) with the MCMC sample superimposed (points)

 Of course, one would ask how sure we can be that our sample space

(visualized above) is appropriate and guaranties we’re integrating true distribution

(i.e. integrating to one using the boundaries of our space)? If we look at the proportion

of samples from the posterior contained within considered sample space you’ll see it’s

almost 1. Thus, we can construct the posterior distribution safely over this range (try

using whole sample from the posterior – such histogram would be impossible to

interpret).

> ###code block 6

144

> prop.table(table(m1$Sol > -1 & m1$Sol<1 & m1$VCV<2))

 FALSE TRUE

0.1444815 0.8555185

> hist(m1$VCV[which(m1$VCV<2)],breaks=30)

> abline(v=Bayes$par["v"],col="red") #estimates from optimising procedure

Fig 42: Posterior marginal distribution of the variance; line denotes REML estimate of the variance

Let’s go nasty – improper priors

As I mentioned, sometimes priors are not proper, i.e. they don’t integrate to unity. The

simplest example is a uniform prior defined over R. It’s not proper since it integrates

to +∞. Uniform prior would be proper only when defined over the range A=[a,b]⊂R so

that P(x∊A)(b-a)=1.

 In case of IW-distributed priors for single variance components they’re

improper when nu≤0. For nu=0 we get flat prior for variance. This reduces well

145

known Bayesian equation to simple ML estimator: P(par|y)~P(y|par). In other words

– the joint posterior distribution will be equal to ML estimator but remember – modes

you’re getting analyzing problems are from marginal distributions, not from the joint

one.

We may also define prior that will be non-informative for the variance and

this could be achieved by setting V=0 and nu=-2. Such prior makes joint posterior to

deviate from ML estimates but marginal estimates of variance are in agreement with

REML.

In general – priors in MCMCglmm lead often to confusion. Several conventions

exist for defining them. E.g. improper priors can be useful in a way that they allow for

reducing our problem to simple ML estimator or REML estimator (for marginal

distributions of parameters). However, improper priors must be used with caution –

improper prior distribution may lead to improper posterior distribution, which would

be meaningless from a statistical point of view. The question is – which strategy to

adopt in defining priors? First of all – use weak priors unless you want to impose some

(strong) constraints on the variance. In general – having good data, with appropriate

levels of replication, and sampling populations of random effects accordingly should

make priors less influential – in other words, when the data contain enough

information to estimate the parameters, priors should not influence these estimates.

In case of less informative data you might consider using improper priors, but be

extremely cautious. From my point of view two approaches are recommended: use

either priors with V=1 and nu=0.002 or calculate the variance from your data and

use it (partitioned accordingly with respect to random effects) as values for V. You’ll

see these approaches in further parts of this workshop.

146

Part B ~ More on Markov Chain methods

MCMCglmm and lmer – which to choose?

This is simple: if you have good, well replicated Gaussian data, with lots of information

on large numbers of random effects’ levels – use lmer. It performs well, but

remember that significance tests may be a little cumbersome. However, if you want to

fit categorical random interactions – avoid using lmer. It doesn’t allow for residual

variances to differ between levels of fixed effect and thus any differences here could

possibly be confounded with the differences in variances associated with a particular

random effect. For categorical interactions use MCMCglmm.

 In case of non-Gaussian data use MCMCglmm – REML methods are not able to

analytically derive likelihood in such data and work on approximations. If such

approximations are then used in likelihood-ratio tests – results may not be reliable.

 Finally – remember that Poisson and binomial data are almost always

overdispersed. lmer has this famous “quasi” prefix for such distributions that

should deal with it. However, it doesn’t. MCMCglmm fits overdispersion by default – so

it’s much better choice. A good alternative is ASReml, which is faster than MCMCglmm

– but it’s not free which for many people is limiting. And it also works on REML

estimates which may be problematic in case of “weird” distributions.

MCMC diagnostics

MCMCglmm works using randomization so utmost care should be taken to ensure that

this random sampling actually samples joint posterior distribution of parameters.

Specifically, you have to check if consecutive samples from the posterior are

independent from each other. At the beginning they may not be independent as the

walk through the posterior starts from some values, but then the chain should

converge and samples should be independent.

 At first, let’s generate some “artificial” problems by shortening the MCMC

chain in one of the previous models (on blue tits). We achieve this by setting the

number of iterations to some low value (nitt=2000). Default burnin=3000, so we

should lower this value below 2000. We’ll sample every second iteration (thin=2).

> ###code block 12

> library(MCMCglmm); data(BTdata)

> prior <- list(R=list(V=1,nu=0.002),

+ G=list(G1=list(V=1,nu=0.002),

147

+ G2=list(V=1,nu=0.002)))

> m3.bad <- MCMCglmm(tarsus~sex, random=~fosternest+dam,

+ prior=prior,verbose=F, data=BTdata, nitt=2000,

+ burnin=500, thin=2)

> plot(m3.bad$VCV)

> autocorr(m3.bad$VCV)

, , fosternest

 fosternest dam units

Lag 0 1.00000000 -0.24455001 -0.10430602

Lag 2 0.82815231 -0.23892563 -0.10144780

Lag 10 0.47711854 -0.09162047 -0.09937022

Lag 20 0.23792851 -0.08204370 -0.09793121

Lag 100 -0.02210706 0.04458598 -0.04048683

, , dam

 fosternest dam units

Lag 0 -0.2445500147 1.000000000 -0.10084968

Lag 2 -0.2245963939 0.359331075 -0.01494919

Lag 10 -0.1340634723 -0.019236027 0.01143639

Lag 20 -0.1250328753 -0.009754384 0.02827148

Lag 100 0.0009055187 -0.073661071 0.01977242

, , units

 fosternest dam units

Lag 0 -0.104306016 -0.10084968 1.00000000

Lag 2 -0.094951195 -0.09790104 0.07213249

Lag 10 -0.036437767 -0.04785507 -0.01063517

Lag 20 -0.031778578 0.01160051 -0.03949663

Lag 100 -0.009335712 0.03043995 -0.03858646

> m3.good <- MCMCglmm(tarsus~sex, random=~fosternest+dam,

+ prior=prior,verbose=F, data=BTdata,

+ nitt=50000, burnin=3000, thin=50)

> plot(m3.good$VCV)

> autocorr(m3.good$VCV)

, , fosternest

 fosternest dam units

Lag 0 1.0000000000 -0.225723765 -0.18379490

Lag 50 0.0007770752 -0.027699347 0.02414860

Lag 250 0.0223765238 0.019155326 -0.01651623

Lag 500 -0.0197449053 0.002413883 -0.02576015

Lag 2500 0.0043333577 0.019968891 0.04245713

, , dam

 fosternest dam units

Lag 0 -0.22572376 1.00000000 -0.015647709

Lag 50 -0.06615831 0.01547784 0.029970618

Lag 250 -0.06405542 0.03430238 -0.001347705

Lag 500 0.03822892 -0.02795335 -0.015139277

Lag 2500 -0.02030468 0.07640567 0.014159344

148

, , units

 fosternest dam units

Lag 0 -0.183794898 -0.015647709 1.00000000

Lag 50 -0.011400580 0.002101844 -0.02310039

Lag 250 -0.005789198 -0.060701762 0.04574427

Lag 500 -0.026688031 -0.023276145 0.02380457

Lag 2500 -0.009362384 0.012835732 0.02213512

> #try below if you don't want to have huge

> #complex matrix outputs

> diag(autocorr(m3.good$VCV)[2,,])

 fosternest dam units

 0.0007770752 0.0154778375 -0.0231003891

 The first model mixes poorly, and clear trends in time series suggest non-

independence of samples drawn from posterior. Additionally, autocorr indicates

substantial autocorrelation in random effects of dam and fosternest (in units it’s

smaller). After extending the chain problems disappear. Chains are in the form of flat

time series, and autocorrelations are well below 0.05.

 Finally, there’s one more aspect of MCMC diagnostics: we should not only

ensure independence of consecutive samples but also make sure that all effects are

sampled good enough, i.e. samples we based our estimation on are large enough.

> ###code block 12a

> effectiveSize(m3.good$VCV)

fosternest dam units

 940.0000 816.6073 940.0000

More on overdispersion – Poisson data

We have already seen how non-gaussian data can mess up with our conclusions if

handled incorrectly. Also, we have seen substantial influence of additional variability

in our data that is not accounted for in the analyses. We have modelled this

overdispersion of our data removing one of predictor variables, a priori known to

influence the response. Omitting one variable not only extremely biases estimates but

also changes deviance to df ratio. In general, if the model fitted is correct, the

asymptotic distribution of deviance should be proportional do a Chi-squared variable

with n-p df (roughly speaking number of data minus number of predictors):

D~χ2(df=n-p). If D>n-p>E[χ2(df=n-p)] it may indicate overdispersion. To be more

practical, in the presence of overdispersion the ratio of residual deviance to residual df

will be greater than 1. It’s value approximately tells us about the strength of

overdispersion. Even using quasipoisson distribution does not change anything –

149

estimates look the same. However, when fitting the same model in MCMCglmm –

estimates are much better. They’re still biased but much closer to their true values. It

is because MCMCglmm uses additive model of overdispersion. What does it mean?

In its usual form linear model I defined like this: y=Xβ+e where e is residual

(unexplained variance in the response). Taking expectations gives: E[y]=exp(Xβ).

Exponent indicates, that it’s a Poisson process for which log is the link function. We

may present this on the scale of the latent variable: l=η which is equivalent to

log(E[y])= Xβ. However, in the presence of overdispersion, there’s additional variation

on top of the predicted value and it gives: E[y]=exp(Xβ+e*) or l=η+e*. Now it is not

entirely true that y~Pois(exp(l)) because there is this additional variation over the

variability of Poisson process (Hadfield, 2010b). We can actually see these additional

“residuals” (quotation marks indicate that this residual shows deviation from the

variance expected by the Poisson process for a given mean). We’ll analyse data on

traffic accidents in Sweden. Analysis was performed to see if speed limit has some

effect on the number of accidents, and if there are any year-by-year and day-by-day

trends.

> ###code block 14

> library(MASS)

> data(Traffic)

> Traffic$year<-as.factor(Traffic$year)

>

> m4.bad <- glm(y~limit+year+day,family="poisson",data=Traffic)

> summary(m4.bad)

Call:

glm(formula = y ~ limit + year + day, family = "poisson", data = Traffic)

Deviance Residuals:

 Min 1Q Median 3Q Max

-4.1774 -1.4067 -0.4040 0.9725 4.9920

Coefficients:

 Estimate Std. Error z value Pr(>|z|)

(Intercept) 3.0467406 0.0372985 81.685 < 2e-16 ***

limityes -0.1749337 0.0355784 -4.917 8.79e-07 ***

year1962 -0.0605503 0.0334364 -1.811 0.0702 .

day 0.0024164 0.0005964 4.052 5.09e-05 ***

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

(Dispersion parameter for poisson family taken to be 1)

 Null deviance: 625.25 on 183 degrees of freedom

Residual deviance: 569.25 on 180 degrees of freedom

AIC: 1467.2

Number of Fisher Scoring iterations: 4

150

> m4.bad$deviance/m4.bad$df.residual

[1] 3.162493

> # >3 times greater variation than expected

We can extract information on these residuals – this would require recording

the behaviour of the latent variable (logged expectation of the response in this case).

We’ll show how much this additional variation changes Poisson process.

> ###code block 15

> prior <- list(R=list(V=1,nu=0.002))

> m4.good <- MCMCglmm(y~limit+year+day,family="poisson",data=Traffic,

+ prior=prior,verbose=F,pl=T)#pl saves the latent variables

> lat92 <- m4.good$Liab[,92]#predicted by Poisson process

> eta92 <- m4.good$Sol[,"(Intercept)"]+m4.good$Sol[,"day"]*92

> #particular realisation of Poisson process on day 92 in 1961

> resid92 <- lat92-eta92

> mean(resid92)

[1] -0.1240384

> #this realisation is lower than expected from Poisson process

 The figure below actually shows all 92 realisations of this estimated Poisson

process in 1961 without the speed limit. As you can see although the Poisson process

is one (straight line in the middle, linearized as we use predictions on the link-

function scale, i.e. latent variables), each day randomly deviates from this prediction

(thin dotted lines scattered around the thick line). One particular realisation (92nd

day) is depicted using dashed line – it’s the same observation as the one for which we

have calculated the residual above (Hadfield, 2010b).

151

Fig 43: Graphical illustration of overdispersion (see text)

Overdispersion and random effects

The distinction between fixed and random effects is sometimes difficult and

controversial (see the discussion about year effect in countless ecological papers).

However, this controversy in Bayesian analysis largely vanishes since ALL effects are

basically random, they just differ in the way we define their variances. For fixed effects

variances are set as very large, yielding flat priors, whereas for variance components

we shrink this variance to allow it’s direct estimation (for in random effects it’s

variance we’re interested in). Let’s see how we can see this equivalence. First we’ll fit

simple fixed-effect model to our traffic data and obtain predictions for both years

(Hadfield, 2010b).

> ###code block 16

> X <- model.matrix(y~limit+year+day,data=Traffic)

> X[c(1,2,3,91,92,183,184),]

 (Intercept) limityes year1962 day

1 1 0 0 1

2 1 0 0 2

3 1 0 0 3

91 1 0 0 91

92 1 0 0 92

183 1 1 1 91

184 1 1 1 92

> m5.fix <- MCMCglmm(y~limit+year+day,data=Traffic,

+ verbose=F,family="poisson")

152

> # using default prior

> #prediction for 1961 and 1962 with no speed limit

> y61.m5.fix <- m5.fix$Sol[,"(Intercept)"]

> y62.m5.fix <- m5.fix$Sol[,"(Intercept)"]+m5.fix$Sol[,"year1962"]

> posterior.mode(y61.m5.fix)

 var1

2.974852

> posterior.mode(y62.m5.fix)

 var1

2.915276

Now we redefine model so that year is treated as random effect BUT is associated with

large variance, so basically it’s the same as fixed effect. Note different method for

obtaining predictions as in random effects intercept is suppressed by default.

> ###code block 17

> Z <- model.matrix(~year-1,data=Traffic)

> Z[c(1,2,3,91,92,183,184),]

 year1961 year1962

1 1 0

2 1 0

3 1 0

91 1 0

92 1 0

183 0 1

184 0 1

> X2 <- model.matrix(y~limit+day,data=Traffic)

> X2[c(1,2,3,91,92,183,184),]

 (Intercept) limityes day

1 1 0 1

2 1 0 2

3 1 0 3

91 1 0 91

92 1 0 92

183 1 1 91

184 1 1 92

> W<-cbind(X2,Z)#in bayesian statistics we use combined Z nad X matrices

> W[c(1,2,3,91,92,183,184),]

 (Intercept) limityes day year1961 year1962

1 1 0 1 1 0

2 1 0 2 1 0

3 1 0 3 1 0

91 1 0 91 1 0

92 1 0 92 1 0

183 1 1 91 0 1

184 1 1 92 0 1

> prior <- list(R=list(V=1,nu=0.002),

+ G=list(G1=list(V=1e+08,fix=1)))

> m5.ran<-MCMCglmm(y~limit+day,random=~year,family="poisson",

153

+ data=Traffic,verbose=F,prior=prior,pr=T)

> #pr save the posterior of random effects

> y61.m5.ran <- m5.ran$Sol[,"(Intercept)"]+

+ m5.ran$Sol[,"year.1961"]

> y62.m5.ran <- m5.ran$Sol[,"(Intercept)"]+

+ m5.ran$Sol[,"year.1962"]

> #comparing posteriors for year effects from fixed and random effects

> y.fix <- mcmc(cbind(y1961=y61.m5.fix,y1962=y62.m5.fix))

> y.ran <- mcmc(cbind(y1961=y61.m5.ran,y1962=y62.m5.ran))

> plot(mcmc.list(y.fix,y.ran)) #virtually the same!

> #black trace is for year as fixed effects

> #red trace for year as random effect

> #unfortunately as we have just two levels of year

> #treating this as random confounds year effects with intercept

154

Fig 44: Treating year as random and fixed effects is the same here!

> plot(c(m5.ran$Sol[,"year.1962"]+

+ m5.ran$Sol[,"year.1961"])/2,m5.ran$Sol[,"(Intercept)"])

155

Fig 45: Intercept and year effects are virtually the same

due to confounding of these two factors

And what if we made a more sensible decision and treated day as random

effect? We’ll leave day as continuous predictor to see any trends associated with day,

but also we’ll put categorical variable day as random effect, to account for between

day variability. Recall that we’ve earlier observed this variability as overdispersed

residuals in the Poisson process. Accounting for variability in days almost entirely

removes overdispersion and shrinks residual variance to close to zero.

> ###code block 18

> Traffic$day<-as.factor(Traffic$day)

> prior <- list(R=list(V=1,nu=0.002),

+ G=list(G1=list(V=1,nu=0.002)))

> m6 <- MCMCglmm(y~limit+year+as.numeric(day),random=~day,

+ family="poisson", data=Traffic, prior=prior, verbose=F)

> summary(m6)

156

 Iterations = 12991

 Thinning interval = 3001

 Sample size = 1000

 DIC: 1166.191

 G-structure: ~day

 post.mean l-95% CI u-95% CI eff.samp

day 0.09221 0.06065 0.1296 170.4

 R-structure: ~units

 post.mean l-95% CI u-95% CI eff.samp

units 0.006757 0.0002729 0.01838 49.26

 Location effects: y ~ limit + year + as.numeric(day)

 post.mean l-95% CI u-95% CI eff.samp

(Intercept) 3.0116915 2.8451222 3.1551507 342.8

limityes -0.2495462 -0.3345628 -0.1533956 145.4

year1962 -0.0377975 -0.1201447 0.0389475 193.7

as.numeric(day) 0.0024443 -0.0002819 0.0050961 268.4

 pMCMC

(Intercept) <0.001 ***

limityes <0.001 ***

year1962 0.330

as.numeric(day) 0.096 .

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

> plot(m6$VCV)

> autocorr(m6$VCV)

, , day

 day units

Lag 0 1.00000000 -0.23114258

Lag 10 0.30761083 -0.20437420

Lag 50 0.12384555 -0.12673639

Lag 100 0.06815593 -0.11596727

Lag 500 -0.02644770 0.04207223

, , units

 day units

Lag 0 -0.23114258 1.00000000

Lag 10 -0.23203677 0.84447766

Lag 50 -0.17455563 0.53681546

Lag 100 -0.13089769 0.36073419

Lag 500 0.02705169 -0.09263029

> #we'll run the model for longer to treat

> #autocorrelation in residuals

> m6 <- MCMCglmm(y~limit+year+as.numeric(day),random=~day,

+ family="poisson",data=Traffic,prior=prior,verbose=F,

+ nitt=100000,burnin=20000,thin=50)

157

> plot(m6$VCV)

> #traces look better butperhaps improper

> #or expanded priors would be better

Fig 46: Traces for model with day as random effect

Binary/categorical data

Often in biology our data can be expressed as categories, ordered or without any

numerical value (e.g. colours, sexes, success/failure data). In such cases we should use

categorical family (or ordinal if our categories are ordered in any way),

associated with link-functions logit or probit, respectively. Such data can be troubling

and difficult to analyse.

 We’re in the best positions if we have binomial data, i.e. we have some units

and within every unit we count some successes and some failures. Having such data

makes possible to see if there’s any heterogeneity in those units with respect to

underlying probabilities associated with the binomial process. Here we’ll generate

simple binomial data which show such heterogeneity. Note that if in such data only

intercept is fitted, it indicates heterogeneity as this intercept would be different than

probabilities in every unit.

> ###code block 19

> ones <- rbinom(20, size=5, prob=c(0.2,0.8))

> zeros <- 5-ones

> bdata <- rbind(ones,zeros)

158

> bdata<-rbind(bdata,unit=letters[1:20])

> bdata<-as.data.frame(t(bdata))

> prior <- list(R=list(V=1,nu=0.002))

> m7.bin <- MCMCglmm(cbind(ones,zeros)~1,

+ data=bdata,family="multinomial2",

+ prior=prior,verbose=F,nitt=100000,

+ burnin=20000,thin=50)

> summary(m7.bin)

 Iterations = 99951

 Thinning interval = 20001

 Sample size = 1600

 DIC: 193.2368

 R-structure: ~units

 post.mean l-95% CI u-95% CI eff.samp

units 0.4696 0.0003961 1.537 705.2

 Location effects: cbind(ones, zeros) ~ 1

 post.mean l-95% CI u-95% CI eff.samp pMCMC

(Intercept) -0.1216 -0.6218 0.3347 983 0.596

> install.packages("boot");library(boot)

> inv.logit(summary(m7.bin)$solutions[1]) #intercept is 0.5

[1] 0.4696424

> plot(m7.bin$VCV)

> data(PlodiaR)#and there is substantial variation above that from

> #binomial process

159

Fig 47: Residuals show substantial overdispersion

> m8.bin <- MCMCglmm(cbind(Pupated,Infected)~1,

+ family="multinomial2",

+ data=PlodiaR, verbose=F)

> plot(m8.bin$VCV)#again there is additional residual variation

> #that variation may be attributed to family effects

160

> #are Family effects really so variable?

> mode.mu <- posterior.mode(m8.bin$Sol)

> mode.V <- posterior.mode(m8.bin$VCV)

> ondatascale <- inv.logit(rnorm(10000, mean=mode.mu,

+ sd=sqrt(mode.V)))

> hist(ondatascale) #yes, they are!

Fig 48: Histogram of the family effects based on estimates from the model

 Things become more complicated if we don’t have such unit-grouping and

every binary observation is repeated only once. Then we are not able to distinguish

between equal probabilities in every unit or extreme asymmetry in some groups

compared to others. Such scenarios would be indistinguishable and importantly every

numerical inference would be biased by the choice of underlying residual (units)

variance as it would be meaningless. We’ll reanalyse Plodia data, but rewritten in the

form of binary variables. As in such process residual variance cannot be estimated

we’ll fix it at some value and see what happens for different fixing values (Hadfield,

2010b).

161

> ###code block 20

> data(PlodiaRB)

> prior1 <- list(R=list(V=1,fix=1),G=list(G1=list(V=1,nu=0.002)))

> prior2 <- list(R=list(V=2,fix=1),G=list(G1=list(V=1,nu=0.002)))

>

> m9.bin1 <- MCMCglmm(Pupated~1,random=~FSfamily,

+ family="categorical",

+ data=PlodiaRB,prior=prior1,verbose=F)

> m9.bin2 <- MCMCglmm(Pupated~1,random=~FSfamily,

+ family="categorical",

+ data=PlodiaRB,prior=prior2,verbose=F)

>

> plot(mcmc.list(m9.bin1$Sol,m9.bin2$Sol))

> plot(mcmc.list(m9.bin1$VCV,m9.bin2$VCV))#both posteriors differ!

> #red trace is for V=2

Fig 49: Models with residual variance fixed at two values

162

 Both intercept and family variance posteriors differ with regard to the

residual variance we’ve chosen. However it should not worry us. First of all – what

matter the most here is not the absolute variation among families, but the degree to

which two states (Pupated/Infected) are correlated within the same family. This

information is contained in the coefficient of intraclass correlation, calculated like this:

IC = Var(FSfamily)/(Var(FSfamily)+Var(units)+c), where the constant

c=pi^2/3 for logit link, and c=1 for probit link. You can check that both IC’s have the

same posterior distribution:

> ###code block 21

> IC1 <- m9.bin1$VCV[,1]/(rowSums(m9.bin1$VCV)+pi^2/3)

> IC2 <- m9.bin2$VCV[,1]/(rowSums(m9.bin2$VCV)+pi^2/3)

> plot(mcmc.list(IC1,IC2))

Fig 50: Posterior distributions of intraclass correlation coeffcients

163

 As for intercept, we can use Hadfield’s results (2010b), due to Diggle et al.

(2004), and rescale estimates so that they assumed some particular value of residual

variance (Var(units)=v). Location effects (intercept, regression coefficients) can be

rescaled by factor sqrt((1+c^2*v)/(1+c^2*Var(units))) and variance

estimates may be rescaled by factor (1+c^2*v)/(1+c^2*Var(units)). The

constant is 1 for probit and 16*sqrt(3)/15*pi for logit. Let’s try this for assumed

residual variance of zero (v=0). Posteriors of Intercept are the same, up to Monte

Carlo error.

> ###code block 22

> c <- 16*sqrt(3)/(15*pi)

> Int1 <- m9.bin1$Sol/sqrt(1+c^2*m9.bin1$VCV[,2])

> Int2 <- m9.bin2$Sol/sqrt(1+c^2*m9.bin2$VCV[,2])

> plot(mcmc.list(Int1,Int2)) #the same

164

 Importantly, binary data can cause problems when there’s large (near

complete) separation, i.e. when most successes happened in one unit and most

failures in other. This is because although on the link (logit) scale prior for the mean is

flat (large variance), it’s not flat at all on the data scale and has two distinct modes:

> ###code block 23

> hist(inv.logit(rnorm(1000,0,sqrt(1e+08))))

> #alternatively

> #hist(plogis(rnorm(1000,0,sqrt(1e+08))))

 This inconsistency between the link and data scales isn’t that important if one

analyses well structured data, e.g. where representation of “ones” and “zeros” is

roughly equal in experimental units. However, if the effect on one factor is so strong

that particular levels of this factor have only ones or zeros – problems may appear.

This type of data is called to have large separation. Let’s simulate toy data with such

huge separation (output of a theoretical experiment with control (1) and treatment

(2) where treatment gets most/all zeros from the response) and see how we can

analyse them using usual glm() and MCMCglmm(). Obviously, in such a case the

effect of the treatment should be highly significant. It’s apparent, that only after

changing the prior (and removing intercept) we can get some sensible results

(Hadfield, 2010b). The correction we use is setting the prior for the mean to the value

of 1+(π2/3). The improvement in mixing and traces’ shape is apparent and exact

binomial test confirms that results of our model are sensible:

165

> ###code bloc 24

> exper <- gl(2,25)

> y <- rbinom(50,1,c(0.5, 0.001)[exper])

> bdata2 <- data.frame(exp=exper,y=y)

> table(bdata2)

 y

exp 0 1

 1 14 11

 2 25 0

>

> m10.glm <- glm(y~exp,data=bdata2,family="binomial")

> summary(m10.glm)#no significant effect!

Call:

glm(formula = y ~ exp, family = "binomial", data = bdata2)

Deviance Residuals:

 Min 1Q Median 3Q Max

-1.077e+00 -1.077e+00 -7.976e-05 -7.976e-05 1.281e+00

Coefficients:

 Estimate Std. Error z value Pr(>|z|)

(Intercept) -0.2412 0.4029 -0.599 0.549

exp2 -19.3249 2150.8026 -0.009 0.993

(Dispersion parameter for binomial family taken to be 1)

 Null deviance: 52.691 on 49 degrees of freedom

Residual deviance: 34.296 on 48 degrees of freedom

AIC: 38.296

Number of Fisher Scoring iterations: 18

> prior.def<-list(R=list(V=1,fix=1))

> m10.mc <- MCMCglmm(y~exp,data=bdata2,family="categorical",

+ prior=prior.def,verbose=F)#significant result but...

> summary(m10.mc)

 Iterations = 12991

 Thinning interval = 3001

 Sample size = 1000

 DIC: 36.75788

 R-structure: ~units

 post.mean l-95% CI u-95% CI eff.samp

units 1 1 1 0

 Location effects: y ~ exp

 post.mean l-95% CI u-95% CI eff.samp pMCMC

(Intercept) -0.2432 -1.1484 0.7405 321.737 0.632

exp2 -10.9369 -17.2524 -2.4858 6.142 <0.001 ***

166

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

> plot(m10.mc$Sol)#...extreme autocorrelation observed

Fig 51: Bad priors cause extreme autocorrelation

> prior.better <- list(R=list(V=1,fix=1),

+ B=list(mu=c(0,0),V=diag(2)*(1+pi^2/3)))

> m10.mc2 <- MCMCglmm(y~exp,data=bdata2,family="categorical",

+ prior=prior.better, verbose=F)

> plot(m10.mc2$Sol)

> #looks much better but still may need running for longer

167

Fig 52: Employing good priors removes most problems

> #checking if the results conform to simpler test - exact binomial

> m10.test <- binom.test(table(bdata2)[2,2],25)

> m10.test

 Exact binomial test

data: table(bdata2)[2, 2] and 25

number of successes = 0, number of trials = 25, p-value

= 5.96e-08

alternative hypothesis: true probability of success is not equal to 0.5

95 percent confidence interval:

 0.0000000 0.1371852

sample estimates:

probability of success

 0

> predict(m10.mc2,interval="confidence")[26,]

 fit lwr upr

0.045980115 0.003148058 0.116423314

168

Warning message:

In predict.MCMCglmm(m10.mc2, interval = "confidence") :

 predict.MCMCglmm is still developmental - be careful

Closer look at categorical random interaction

We’ve heard something on random interactions in lmer. Here we’ll extend this

concept in MCMCglmm as it gives much greater control on (co)variance structures.

 We could repeat our analysis when looking at the interaction between sex and

dam in our system (BTdata). Previously we used two variance functions, allowing or

not for non-zero covariances. Now we’ll repeat this analyses to have a closer look at

these results.

> ###code block 25

> #if you haven’t – do the following

> library(MCMCglmm); data(BTdata)

> prior.a <- list(R=list(V=1,nu=0.002),

+ G=list(G1=list(V=1,nu=0.002),

+ G2=list(V=diag(3),nu=0.002)))

> m11.bta <- MCMCglmm(tarsus~sex, random=~fosternest+idh(sex):dam,

+ prior=prior.a,verbose=F, data=BTdata)

> #using idh structure which sets covariances to zero

> plot(m11.bta$VCV)

> #UNK has low dam variance which may be problematic

 We can see the actual matrix of correlations in the dam effects and its

representation in the R3 space.

> ###code block 26

> Vdam.a <- diag(colMeans(m11.bta$VCV)[2:4])

> colnames(Vdam.a) <- colnames(m11.bta$VCV)[2:4]

> Vdam.a

 Fem.dam Male.dam UNK.dam

[1,] 0.1765957 0.0000000 0.00000000

[2,] 0.0000000 0.1715039 0.00000000

[3,] 0.0000000 0.0000000 0.05000367

>

> plotsubspace(Vdam.a,axes.lab=T)

Loading required package: rgl

> #elipsoid depicting this covariance structure

169

Fig 53: Elipsoid depicting covariance structure with correlations fixed at zero

 The same can be done with an alternative definition of covariance structure

using us(). We’ve used this function already but now we’ll specify better prior. In

general, priors for complex (co)variance structures depend on the particular structure

(see next section).

> ###code block 27

>

> prior.b <- list(R=list(V=1,nu=0.002),

+ G=list(G1=list(V=1,nu=0.002),

+ G2=list(V=diag(3)*0.02,nu=4)))

> m11.btb <- MCMCglmm(tarsus~sex, random=~fosternest+us(sex):dam,

+ prior=prior.b,

+ verbose=F, data=BTdata)

Warning message:

In MCMCglmm(tarsus ~ sex, random = ~fosternest + us(sex):dam, prior = prior.b, :

 some combinations in us(sex):dam do not exist and 75 missing records have been

generated

> plot(m11.btb$VCV)

> Vdam.b <- matrix(colMeans(m11.btb$VCV)[2:10],3,3)

> colnames(Vdam.b) <- colnames(m11.btb$VCV)[2:4]

> Vdam.b

 Fem:Fem.dam Male:Fem.dam UNK:Fem.dam

[1,] 0.2319357 0.1994277 0.2237089

[2,] 0.1994277 0.2117362 0.2120803

[3,] 0.2237089 0.2120803 0.2889578

>

> plotsubspace(Vdam.b,axes.lab=T)

> #elipsoid depicting this covariance structure

170

Fig 54: Elipsoid depicting covariance structure with correlations estimated

> plot(posterior.cor(m11.btb$VCV[,2:10])[,c(3,4,8)])

> #all r roughly equal to 1

Fig 55: Posterior distributions of correlations

171

> "simpler model";m2.bt1$DIC

[1] "simpler model"

[1] 1992.66

> "us() variance structure";m11.btb$DIC

[1] "us() variance structure"

[1] 1997.765

> "idh() variance structure";m11.bta$DIC

[1] "idh() variance structure"

[1] 2037.151

 As you can see both correlations are strong (almost 1) and variances are

equal. Model with zero covariances is the worst, based on DIC values. Remaining two

are similar but simpler one (equal variances and unity correlations) is better. In

general, be careful when comparing models with different prior structures (as it was

done here). DIC differences smaller than 2 should be treated with caution in such

cases.

Priors for complex covariance structures

Complex variance structures have to take into account possible dependence of

variances (which arises in case of non-zero covariances) (Hadfield, 2010b). For

idh() variance structures it’s simple: each variance in the structure is distributed

independently, so new prior (nu_ and V_, notation adopted from Hadfield (2010))

relates to a single-variance prior (nu and V) like this:

σi
2 ~ IW(nu_=nu, V_=V[1,1])

Hence prior specification in the example: V=diag(3), nu=0.002.

 For us() structures it’s more complicated:

σi
2 ~ IW(nu_=nu-dim(V)+1, V_=V[1,1]*nu/nu_)

Consequently, we used V=diag(3)*0.02 and nu=4. We did use nu=4 instead of

usual nu=4.002 and lower variance value to make this prior proper but also

uninformative for correlation. We could alternatively use an improper prior, by

setting V=diag(dim(V))*0 and nu=dim(V)-3, but remember dangers of using

improper priors.

 Using inverse gamma distribution, with shape=nu/2 and

scale=(nu*V)/2 we can actually visualize this prior for one of its elements:

> ###code block 28

> nu.star <- prior.bGG2$nu - dim(prior.b$G$G2$V)[1]*1

172

> V.star <- prior.bGG2$V[1,1]*(prior.b$G$G2$nu/nu.star)

> xv <- seq(1e-16,1,length=100)

> library(MCMCpack)

> dv<-dinvgamma(xv,shape=nu.star/2,scale=(nu.star*V.star)/2)

> detach(package:MCMCpack)

> plot(dv~xv,type="l")

Fig 56: Inverse Wishart distribution; see text for details

173

Part C ~ Extending linear mixed models

Brief introduction to phylogenies in R

Phylogenies in some way are similar to pedigrees. They also represent relationships,

however not between individuals, but between species or higher taxa. We may use

them in MCMCglmm in exactly the same way as we did with pedigrees and thus build

phylogenetic comparative models, accounting for variability that might have arisen

from evolutionary history rather than genuine ecological/individual-based processes.

First we’ll learn how to build and handle phylogenies in R. We’ll use the package ape

and as its output objects can be directly handled by MCMCglmm.

 We’ll work with the mammals species phylogeny based on mammals super-

tree and provided in Adams (2007).

> ###code block B6

> mammals <- read.nexus("mammals.nex")#read a tree in Nexus format

> mammals

Phylogenetic tree with 40 tips and 35 internal nodes.

Tip labels:

 Rattus_rattus, Sigmodon_hispidus, Peromyscus_eremicus, Peromyscus_maniculatus,

Neotoma_cinerea, Microtus_pennsylvanicus, ...

Rooted; includes branch lengths.

> summary(mammals)

Phylogenetic tree: mammals

 Number of tips: 40

 Number of nodes: 35

 Branch lengths:

 mean: 19.89730

 variance: 641.1923

 distribution summary:

 Min. 1st Qu. Median 3rd Qu. Max.

 0.10 3.10 9.10 26.52 94.50

 No root edge.

 First ten tip labels: Rattus_rattus

 Sigmodon_hispidus

 Peromyscus_eremicus

 Peromyscus_maniculatus

 Neotoma_cinerea

 Microtus_pennsylvanicus

 Microtus_montebelli

174

 Chaetodipus_penicillatus

 Dipodomys_ordii

 Dipodomys_compactus

 No node labels.

> mammals.plot<-plot(mammals,font=1,cex=0.75)

> nodelabels()

Fig 57: Mammals phylogeny

> #if you want you can write the tree in newick or nexus format

> write.nexus(mammals,file="mammals.nex")

> write.tree(mammals,file="mammals.nck")

 If you don’t have the tree and just have information to build one (e.g. DNA

sequences) you can do this in ape. You can choose among different methods of

clustering and different models of evolution.

> ###code block B7

> data(woodmouse)

> woodmouse

15 DNA sequences in binary format stored in a matrix.

175

All sequences of same length: 965

Labels: No305 No304 No306 No0906S No0908S No0909S ...

Base composition:

 a c g t

0.307 0.261 0.126 0.306

> base.freq(woodmouse)

 a c g t

0.3065414 0.2613083 0.1260264 0.3061239

> write.dna(woodmouse,"woodmouse.fas",format="fasta")#saving DNA data

> rodents <- read.dna("woodmouse.fas",format="fasta")#and reading it

> rodents[1,] #first sequence

1 DNA sequences in binary format stored in a matrix.

All sequences of same length: 965

Labels: No305

Base composition:

 a c g t

0.304 0.262 0.129 0.306

> #here we can represent DNA sequence as text and paste single bases

> #together using no character as separator (collapse argument)

> paste(as.character(rodents[1,1:50]),collapse="")

 [1] "nttcgaaaaacacacccactactaaaanttatcagtcactccttcatcga"

> #calculate phylogeny based on these sequences

> dist.dna(rodents[1:5,])

 No305 No304 No306 No0906S

No304 0.015975800

No306 0.013815969 0.004210551

No0906S 0.019213434 0.013802125 0.009514854

No0908S 0.017059224 0.011665428 0.007391898 0.012726856

> rodents.dist<-dist.dna(rodents)

> as.matrix(dist.dna(rodents[1:5,])) # looks much better

 No305 No304 No306 No0906S No0908S

No305 0.00000000 0.015975800 0.013815969 0.019213434 0.017059224

No304 0.01597580 0.000000000 0.004210551 0.013802125 0.011665428

No306 0.01381597 0.004210551 0.000000000 0.009514854 0.007391898

No0906S 0.01921343 0.013802125 0.009514854 0.000000000 0.012726856

No0908S 0.01705922 0.011665428 0.007391898 0.012726856 0.000000000

> #build a tree using UPGMA

> cluster<-hclust(rodents.dist)

> rodents.upgma<-as.phylo(cluster)

> plot(rodents.upgma,cex=0.75,font=1,no.margin=T)

176

Fig 58: UPGMA tree

> #we can use neighbour joining instead

> cluster.nj<-nj(rodents.dist)

> rodents.nj<-as.phylo(cluster.nj)

> plot(rodents.nj,cex=0.75,font=1,no.margin=T)

Fig 59: NJ tree

177

 The package ape provides also improved Gascuel’s NJ method bionj() and

several evolution models for calculating distances between sequences (e.g.

model=”JC69”; other models are “K81”, “F84”, “GG85” – see ?dist.dna() for more

details).

Having several trees it’s good to be able to compare them.

> ###codeblock B8

> #compare trees

> all.equal(rodents.nj,rodents.bionj)

[1] FALSE

> #and ignoring branch lengths - i.e. comparring only topologies

> all.equal(rodents.nj,rodents.bionj,use.edge.length=F)

[1] TRUE

> #topologies are the same

> #having a lot of trees you can calculate distances between them

> #here we use rtree() as in distribution functions to generate random

> #trees

> dist.topo(rtree(30),rtree(30))

[1] 54

However, real comparison of trees employs testing, either using

bootstrapping or likelihood methods. Here we’ll bootstrap our NJ tree. From those

who are interested – see package phangorn which offers much more advanced

functions for bootstrapping and ML-ing trees.

> ###code block B9

> #inside the bootstrapping function we must define the

> #tree-building function

> rodents.boot <- boot.phylo(rodents.nj,rodents,

+ function(x){nj(dist.dna(x))},

+ B=200,block=1)

> rodents.boot/2

 [1] 100.0 22.0 53.5 51.5 56.0 42.0 67.5

 [8] 65.5 87.5 90.0 87.0 99.5 59.0

> plot(rodents.nj)

> nodelabels(rodents.boot/2)

178

Fig 60: Mammalian tree with bootstrapping results

What are phylogenies for? If one has the data on some measurements done to

several taxonomic units and a tree relating these taxonomic units one to another, it is

possible to extract from these data phylogenetically independent information, in the

form of phylogenetically independent contrasts (PICs). For more details see the

documentation of the pic() function. However, currently PICs are not so widely used,

mainly because mixed models allow for direct incorporation of phylogenetic

information, similarly as it is done for genealogical information in animal model. How

is it done?

Comparative analysis – simple simulated case

In the context of linear modelling phylogenies are used to remove any

phylogenetic dependencies from our data. Most modern software packages allow for

direct incorporation of phylogenetic information. Here we’ll use simple simulated data

on some hypothetical trait (called y). Evolution of this trait will be simulated across

the phylogeny of bird families, supplied together with the ape package. First we’ll

load required packages and data.

179

> ### code block B13

> library(MCMCglmm); data(bird.families)

> bf.sim <- rTraitCont(bird.families,

+ sigma=runif(Nedge(bird.families),0.1,0.7))

> #see ?rTraitCont for more details

> bf.sim <- data.frame(y=bf.sim,animal=names(bf.sim))

> bf.sim[1:20,]

 y animal

Struthionidae -0.60573476 Struthionidae

Rheidae -2.68284592 Rheidae

Casuariidae 2.46897329 Casuariidae

Apterygidae 1.09753708 Apterygidae

Tinamidae 0.24638486 Tinamidae

Cracidae -0.67455764 Cracidae

Megapodiidae 1.74500202 Megapodiidae

Phasianidae 0.61040649 Phasianidae

Numididae 1.65685699 Numididae

Odontophoridae 0.77349921 Odontophoridae

Anhimidae -2.55968724 Anhimidae

Anseranatidae 1.37302713 Anseranatidae

Dendrocygnidae 0.05206279 Dendrocygnidae

Anatidae -2.81114176 Anatidae

Turnicidae 2.64692783 Turnicidae

Indicatoridae -0.16953127 Indicatoridae

Picidae -0.91794680 Picidae

Megalaimidae 0.82388019 Megalaimidae

Lybiidae 1.38448623 Lybiidae

Ramphastidae 0.19388505 Ramphastidae

> #we'll add some residuals on top

> err <- rnorm(137,sd=sqrt(3)) #there are 137 points in the data

> bf.sim[,1]<-bf.sim[,1]+err

> #and replication

> bf.sim2 <- as.data.frame(bf.sim[sample(1:137,50),])

> err2 <- rnorm(50,runif(20,1,2),sqrt(3))

> bf.sim2[,1]<-bf.sim2[,1]+err2

> bf.sim3 <- as.data.frame(bf.sim[sample(1:137,50,replace=T),])

> err3 <- rnorm(50,runif(20,1.5,2.5),sqrt(3))

> bf.sim3[,1]<-bf.sim3[,1]+err3

> #and combine the three

> bf.sim<-rbind(bf.sim,bf.sim2,bf.sim3)

> summary(bf.sim)

 y animal

 Min. :-6.6159 Casuariidae : 4

 1st Qu.:-1.9046 Laridae : 4

 Median : 0.2256 Pedionomidae : 4

 Mean : 0.2603 Acanthisittidae: 3

 3rd Qu.: 2.1467 Climacteridae : 3

 Max. : 9.9202 Cracidae : 3

 (Other) :216

180

 Analysing these data with phylogeny is as simple as fitting an animal model.

> prior.b52 <- list(R=list(V=1,nu=0.002),G=list(G1=list(V=1,nu=0.002)))

> m.b53 <- MCMCglmm(y~1,random=~animal,pedigree=bird.families,

+ data=bf.sim,verbose=F,prior=prior.b52)

Warning message:

In MCMCglmm(y ~ 1, random = ~animal, pedigree = bird.families, data = bf.sim, :

 some combinations in animal do not exist and 134 missing records have been generated

> plot(m.b53$VCV) #phylogenetic signal is significant

Fig 61: Comparative model; see large animal variance

> posterior.mode(m.b53$Sol)

(Intercept)

 1.040746

> m.b53a <- MCMCglmm(y~1,data=bf.sim,verbose=F)

> posterior.mode(m.b53a$Sol)

(Intercept)

 0.6232146

> #as in ordinary animal model we can estimate so

> #called phylogenetic heritability

> #the proportion of total variance explained by

> #phylogenetic effects of shared ancestry

181

> hp2 <- m.b53$VCV[,"animal"]/rowSums(m.b53$VCV)

> posterior.mode(hp2)

 var1

0.7875332

> HPDinterval(hp2)

 lower upper

var1 0.680153 0.8452737

attr(,"Probability")

[1] 0.95

As you can see, not accounting for phylogeny may yield false picture of the reality

underlying measured traits. We could expand this model and analyse more than one

trait and see if they evolve in a correlated fashion across the phylogeny – which would

be equivalent of calculating ordinary genetic correlation in an animal model

framework.

Meta-analysis

Now we’ll extend what we’ve learned so far and fit meta-analysis. Meta-analytical

approach became very popular recently as it allows for answering very general

questions. In its essence meta-analysis is very simple – instead of analysing raw data

we take already calculated trends/statistics and look at their variability. In general,

meta-analysis asks if predicted values of statistics holds after accounting for many

studies, or if predicted relationship exists at the level of many studies. In such a case

you assume that any error (residual variation) in our data is due to error in estimating

statistics. In other words we can insert this error as some a priori known “residuals”.

Note, that sometimes meta-analyst is able to get accurate “raw” data from

publications. In this case we use ordinary GLMM with response and estimated residual

variance (one of the best examples is Cornwallis et al. (2010)).

 Here we’ll use example from Adams (2007). He examined if there are any

body size clines in mammals, i.e. if mammals are larger in larger latitudes, where the

climate is cooler. He gathered data on different mammal taxa from many papers, and

for each paper he calculated effect size as the correlation between mammal body size

and latitude. Following his paper and general strategy of meta-analysis we’ll estimate

measurement error (sampling variance of the statistic) based on the number of

geographic locations from which data were available in each study. At first we’ll try

simple meta-analysis, ignoring any phylogenetic dependence of examined taxa.

> ### code block C1

> #if not loaded already:

> library(MCMCglmm)

> clines <- read.csv("mamm_clines.csv",head=T)

> clines<-clines[,-4]

182

> #effect size

> clines$FisherZ<-0.5*log((1+clines$corr)/(1-clines$corr))

> clines$mev<-1/(clines$N-3)#measurement error as variance

> prior.c1 <- list(R=list(V=1,nu=0.002))

> m.c11 <- MCMCglmm(FisherZ~1, verbose=F, prior=prior.c1,

+ data=clines)

> summary(m.c11)

 Iterations = 12991

 Thinning interval = 3001

 Sample size = 1000

 DIC: 96.98406

 R-structure: ~units

 post.mean l-95% CI u-95% CI eff.samp

units 0.6406 0.3784 0.9262 1000

 Location effects: FisherZ ~ 1

 post.mean l-95% CI u-95% CI eff.samp pMCMC

(Intercept) 0.29774 0.05018 0.52676 1000 0.012 *

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

> #we add sampling error of statistics mev

> m.c12 <- MCMCglmm(FisherZ~1, verbose=F, prior=prior.c1,

+ data=clines, mev=clines$mev)

> #note the mev argument typical for meta-analysis

Loading required package: polynom

> summary(m.c12)

 Iterations = 12991

 Thinning interval = 3001

 Sample size = 1000

 DIC: 88.50683

 R-structure: ~units

 post.mean l-95% CI u-95% CI

leg(mev, -1, FALSE):leg(mev, -1, FALSE).meta 1 1 1

 eff.samp

leg(mev, -1, FALSE):leg(mev, -1, FALSE).meta 0

 Location effects: FisherZ ~ 1

 post.mean l-95% CI u-95% CI eff.samp pMCMC

(Intercept) 0.21998 0.01472 0.45575 961.3 0.044 *

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

> plot(m.c12) #check for autocorrelation problems

183

> #funnel plot below confirms overall positive effect

> plot(corr~N,data=clines,type="p",pch=20,ylab="Correlation",

+ xlab="N locations")

> abline(h=mean(clines$corr),lwd=1,lty=3)

Fig 62: Funel-plot for Adams (2007)

It seems that there’s an overall tendency in mammals to be bigger as they live

further from the equator. If this phenomenon was due to ecological processes it might

indicate that, as endotherms, mammals tend to be larger in cooler climate to conserve

heat. Such pattern would thus indicate that during evolution mammals evolved this

mechanism of saving body heat. However, such correlation of body size and latitudinal

distribution could also arise simply during evolutionary history as a result of non-

random migration patterns etc. If so we would expect that closely related species

would show similar relationship of body size vs. latitude; in other words, in such a

scenario phylogenetic variation would explain large proportion of variance in our

effect size measures. To test this we perform comparative meta-analysis, taking into

account phylogeny of mammals. As it turns out – the overall effect disappears clearly

showing that any observed relationships are only due to shared evolutionary history.

184

> library(ape)

> mammals <- read.nexus("mammals.nex") #relevant phylogenetic tree

> plot(mammals,cex=0.75)

Fig 63: Phylogenetic tree form Adams (2007)

> names(clines)[1]<-"animal" #names of the taxa to the animal variable

> prior.c2 <- list(R=list(V=1,nu=0.002),

+ G=list(G1=list(V=1,nu=0.002)))

> m.c13 <- MCMCglmm(FisherZ~1, verbose=F, prior=prior.c2,

+ data=clines,

+ mev=clines$mev,random=~animal,

+ pedigree=mammals,

+ nitt=150000,burnin=30000,thin=150)

Warning message:

In MCMCglmm(FisherZ ~ 1, verbose = F, prior = prior.c2, data = clines, :

185

 some combinations in animal do not exist and 34 missing records have been generated

> plot(m.c13$VCV) #phylogenetic signal is significant although small

Fig 64: Random effects in comparative meta-analysis from Adams (2007)

> summary(m.c13)

 Iterations = 149851

 Thinning interval = 30001

 Sample size = 800

 DIC: 57.50496

 G-structure: ~animal

 post.mean l-95% CI u-95% CI eff.samp

186

animal 0.3906 0.0003283 1.05 546.9

 R-structure: ~units

 post.mean l-95% CI u-95% CI eff.samp

units 0.2281 0.0009862 0.5038 521.4

 Location effects: FisherZ ~ 1

 post.mean l-95% CI u-95% CI eff.samp pMCMC

(Intercept) 0.3414 -0.1611 0.9201 800 0.143

> diag(autocorr(m.c13$VCV)[2,,])

 animal

 0.1270430

leg(mev, -1, FALSE):leg(mev, -1, FALSE).meta

 NaN

 units

 0.1609003

> #should be ran for longer - >300000

> #BUT effect we looked for disappeared...

Random regression

In the basic part chapter we learned how to fit categorical random interactions. It’s

equal to allowing for differences in the intercept across the levels of random term.

However, sometimes it is sensible to add also differences in slopes among

individuals/units. Such models are called random regression models. We will use

strategy from Hadfield (2010) for the longitudinal data on chicken growth. First, let’s

analyse it with a simple model. Fitting random effect of the chick id means that we

want to have separate intercepts for each chick. As the data are not linear we will stick

to some polynomial approximations of curvilinearity.

> ###code block B14

> #if not loaded:

> library(MCMCglmm)

> data(ChickWeight)

> xyplot(weight~Time|Chick,data=ChickWeight)

> #it visualises the effect of time on growth for all chicks

187

Fig 65: Growth curves for 50 chickens

> prior.b61 <- list(R=list(V=1e-16,nu=-2),G=list(G1=list(V=1,nu=1)))

> m.b61 <- MCMCglmm(weight~Diet+poly(Time,2,raw=T),random=~Chick,

+ data=ChickWeight, verbose=F, pr=T, prior=prior.b61,

+ saveX=T, saveZ=T)

> #simple random effect model with curvilinear pattern

> #we also save X and Z – fixed and random effects design matrices

> #all random effects (i.e. posteriors for BLUPs) using pr=T

> pop.int <- posterior.mode(m.b61$Sol[,1]) #overall intercept

> pop.slope <- posterior.mode(m.b61$Sol[,5]) #overall linear slope

> pop.quad <- posterior.mode(m.b61$Sol[,6]) #overall quadratic slope

> chick.int <- posterior.mode(m.b61$Sol[,c(7:56)]) #chicks’ intercepts

> time <- ChickWeight$Time[1:12]

> plot(pop.int+pop.slope*I(time^1)+pop.quad*I(time^2)~time,

188

+ type="l",lwd=2,ylim=c(-50,400)) #plots overall population curve

> for(i in 1:50) {

+ lines(pop.int+chick.int[i]+pop.slope*I(time^1)+

+ pop.quad*I(time^2)~time,lty=3,col="red")

+ } #plots curves for each chocks with their specific intercepts

Fig 66: Population curve (thick black) and chick-specific curves (dotted red)

> #we can print predictions from our model for each chick by

> #multiplying design matrix W=[X,Z] for effects by

> #parameter vector theta=[beta,u]

> W1 <- cBind(m.b61$X,m.b61$Z)

> theta <- posterior.mode(m.b61$Sol)

> prediction1 <- W1 %*% theta #%*% means matrix product

> xyplot(weight+prediction1[,1]~Time|Chick,data=ChickWeight)

189

Fig 67: Chickens' growth curves with predictions added (pink, see PDF version)

As expected, model fits well, predictions look reasonable. However, slight differences

are visible between predicted and real curves for some chicks. Thus, we might as well

allow for differences in slopes between chicks. In the simpler model in random effects

we fitted just single variance, i.e. σ2(Intercept). Interacting random term with both

intercept and slope yields 2x2 covariance structure:

190

> prior.b62 <- list(R=list(V=1e-16,nu=-2),

+ G=list(G1=list(V=diag(2),nu=2)))

> #use matrix (hence diag()) since random effects have complex structure

> m.b62 <- MCMCglmm(weight~Diet+poly(Time,2,raw=T),

+ random=~us(1+Time):Chick,

+ data=ChickWeight, verbose=F,

+ pr=T,prior=prior.b62,saveX=T,saveZ=T)

> #use us() to allow for covariance between intercept and slope

> diag(autocorr(m.b62$VCV)[2,,]) #diagnostics

(Intercept):(Intercept).Chick Time:(Intercept).Chick

 0.10739398 0.03065336

 (Intercept):Time.Chick Time:Time.Chick

 0.03065336 -0.01052061

 units

 -0.01388139

> r.int.slope <- m.b62$VCV[,2]/sqrt(m.b62$VCV[,1]*m.b62$VCV[,4])

> posterior.mode(r.int.slope)

 var1

-0.9701405

> #correlation close to space boundary - should be run for longer

> #could do predictions by hand or like here by using predict()

> xyplot(weight+predict(m.b62,marginal=NULL)~Time|Chick,data=ChickWeight)

Warning message:

In predict.MCMCglmm(m.b62, marginal = NULL) :

 predict.MCMCglmm is still developmental - be careful

191

Fig 68: Chickens' growth curves with predictions from first random regression

> #looks MUCH better - may could be better

> #adding second random slope for quadratic term?

> prior.b63 <- list(R=list(V=1e-16,nu=-2),

+ G=list(G1=list(V=diag(3),nu=3)))

> m.b63 <- MCMCglmm(weight~Diet+poly(Time,2,raw=T),

+ random=~us(1+poly(Time,2,raw=T)):Chick,

+ data=ChickWeight, verbose=F, pr=T,

+ prior=prior.b63,saveX=T,saveZ=T)

> #DICs confirm it’s the best model - hence chicks differ both in

> #intercepts and (quadratic)slopes

> m.b61$DIC;m.b62$DIC;m.b63$DIC

[1] 5525.139

[1] 4543.945

[1] 3933.421

192

> #to confirm we could see if REML estimators corroborate

> #these conclusions

> library(lme4)

> m.b61reml <- lmer(weight~Diet+poly(Time,2,raw=T)+(1|Chick),

+ data=ChickWeight)

> summary(m.b61reml)@AICtab[1]

 AIC

 5578.963

> m.b62reml <- lmer(weight~Diet+poly(Time,2,raw=T)+(1+Time|Chick),

+ data=ChickWeight)

> summary(m.b62reml)@AICtab[1]

 AIC

 4732.387

> m.b63reml <- lmer(weight~Diet+poly(Time,2,raw=T)+

+ (1+poly(Time,2,raw=T)|Chick),

+ data=ChickWeight)

> summary(m.b63reml)@AICtab[1]

 AIC

 4267.013

> detach(package:lme4)

 Unfortunately, in pursue for the best model we forgot about one thing. In case

of random slope models we should check not only if model is the best-fitting one, but

also how well it’s variance structure describes variance in the real data. Particularly,

having intercept + n slopes fitted as random we expect that variance should change as

the function of n-th degree with the continuous predictor (see Hadfield, 2010b for

more detailed description of this example). We’ll see how it works for toy data and

then inspect our models. In general, from linear modelling theory, variance in the

response should follow something like this: Var[y]=diag(ZVZ’) where Z is the design

matrix for random effects and V is estimated covariance matrix. We can calculate this

directly, having saved design matrices in our models (saveZ=T). However, here we’ll

create our own Z to avoid problems caused by duplication of records (we had several

Diets and several Time points for every Chicken). We create hypothetical design

matrix as if there was one chicken measured over 100 time points.

> toyslope <- rnorm(30)#30 random slopes ~N(0,1)

> #prepare space for the plots

> plot(0,type="n",xlim=c(-1,1),ylim=c(-3,3),ylab="y",xlab="time")

> for (i in 1:30) { #for each of 30 slopes

+ abline(a=0,b=toyslope[i]) #print its line

+ }

193

Fig 69: Simulated data with increasing variance

> time<-seq(0,21,length=100)

> polynomial<-leg(time,2,normalized=F)

> #better than poly because generates first column of ones giving

> #appropriate design matrix for fixed and random slope effects

> #coeficients for fixed effects from above 3 models

> beta1 <- c(posterior.mode(m.b61$Sol[,1]),posterior.mode(m.b61$Sol[,5]),

+ posterior.mode(m.b61$Sol[,6]))

> beta2 <- c(posterior.mode(m.b62$Sol[,1]),posterior.mode(m.b62$Sol[,5]),

+ posterior.mode(m.b62$Sol[,6]))

> beta3 <- c(posterior.mode(m.b63$Sol[,1]),posterior.mode(m.b63$Sol[,5]),

+ posterior.mode(m.b63$Sol[,6]))

> #covariance matrices and residuals from above 3 models

> VCV1 <- matrix(posterior.mode(m.b61$VCV)[1],1,1)#single variance

> VCV2 <- matrix(posterior.mode(m.b62$VCV)[1:(2^2)],2,2)#4 parameters

> VCV3 <- matrix(posterior.mode(m.b63$VCV)[1:(3^2)],3,3)

> #9 parameters

> units1 <- posterior.mode(m.b61$VCV)[2]

> units2 <- posterior.mode(m.b62$VCV)[5]

> #5th parameter cause 4 for (co)variances

> units3 <- posterior.mode(m.b63$VCV)[10]

> #10th cause 9 pars for (co)variances

> plot(weight~Time,data=ChickWeight,cex.lab=1.5) #point data

> mu1 <- polynomial %*% beta1 #population line across time

194

> sd1 <- sqrt(units1+diag(polynomial[,1,drop=F]%*%

+ VCV1%*%t(polynomial[,1,drop=F])))

> #%*% multiplies matrices; drop lets matrix be a matrix

> #after extracting one dimension, otherwise it would be a vector

> #and would cause problems when

> #trying to multiply to get ZVZ'; by using first column of

> #polynomial we create 'new' Z matrix appropriate for

> #the time sequence we have, of length

> #100 rather than 12

> lines(mu1~time,lwd=2) #adds population line

> lines(I(mu1+1.96*sd1)~time,lty=2,lwd=1,col="red")

> lines(I(mu1-1.96*sd1)~time,lty=2,lwd=1,col="red")

> #adds the error associated with population line

Fig 70: Estimated variance structure from simple mixed-effect model

> #very poor fit since SE is constant and points’ scatter increases

> plot(weight~Time,data=ChickWeight,cex.lab=1.5)

> mu2 <- polynomial %*% beta2 #population line across time

> sd2 <- sqrt(units2+diag(polynomial[,1:2,drop=F]%*%VCV2%*%

+ t(polynomial[,1:2,drop=F])))

> lines(mu2~time,lwd=2)

195

> lines(I(mu2+1.96*sd2)~time,lty=2,lwd=1,col="red")

> lines(I(mu2-1.96*sd2)~time,lty=2,lwd=1,col="red")

> #very good fit of variance change to data

Fig 71: Estimated variance structure for linear random slope model

> #good fit of SE structure to points’ variance

> plot(weight~Time,data=ChickWeight,cex.lab=1.5,ylim=c(-150,600))

> mu3 <- polynomial %*% beta3 #population line across time

> sd3 <- sqrt(units2+diag(polynomial[,1:3,drop=F]%*%VCV3%*%

+ t(polynomial[,1:3,drop=F])))

> lines(mu3~time,lwd=2)

> lines(I(mu3+1.96*sd3)~time,lty=2,lwd=1,col="red")

> lines(I(mu3-1.96*sd3)~time,lty=2,lwd=1,col="red")

196

Fig 72: Estimated variance structure from quadratic random slope model

> #very poor fit of variance change to data, 2nd model seems the best!

As you can see – the goodness of fit is not the only thing one should look for in

continuous random effects – other factors such as variance homogeneity should also

be considered.

197

Part D ~ Advanced applications of

MCMCglmm

Parameter expanded priors

One drawback of using MCMC is it’s randomness and sensitivity to the i-1th values of

the chain. In practise it means that if in our model some variance components yield

low values, close to zero, the chain may be trapped at some low value close to zero

causing mixing-problems and in general poor convergence. It may also happen when

some parameters, such as correlations, are close their space boundaries (-1 and 1).

Such problems arise especially when residual variance per se cannot be estimated, as

it is in binomial or Poisson models.

We can try alleviate these problems by using stronger priors – or improper

priors. However, there’s a much better solution called parameter expansion. Assume

we have the design matrix W of the form [X Z1 Z2 … Zk]. We can rescale this matrix

(and thus – whole MC-sampled parameter space) by some parameters α = [1, α1, α2, …

αk]. This would yield Wα = [X Z1 α1 Z2 α2 … Zk αk]. With these alphas we would actually

sample new location effects that could be rescaled to original values: θ = (Iβ⨁k
i=1Iu{i} ⋅

αi)θα. Likewise, rescaling could also be applied to (co)variance matrices: V = Diag(αV)

Vα Diag(αV)’ (Hadfield, 2010b)

Here, we’ll analyse data on sex-ration in blue tits (you already know this

dataset) using both parameter-expanded and standard priors. We’ll compare mixing

properties of these runs. The expanded prior is the half-Cauchy distribution with the

scale of 1000.

> ###code block C3

> #if not loaded:

> library(MCMCglmm)

> data(BTdata)

> #we'll remove unkown sex

> BTdata$sex[which(BTdata$sex=="UNK")]<-NA

> BTdata$sex<-gdata::drop.levels(BTdata$sex)

> #we remove UNK level from the variable

> prior.c31 <-list(R=list(V=1,fix=1),

+ G=list(G1=list(V=1,nu=0.002,

198

+ alpha.mu=0,alpha.V=1000))) #parameter-expanded prior

> prior.c32 <- list(R=list(V=1,fix=1),

+ G=list(G1=list(V=1,nu=0.002)))

> m.c4a <- MCMCglmm(sex~1,random=~dam,data=BTdata,

+ family="categorical",prior=prior.c31,verbose=F,

+ nitt=25000,burnin=5000,thin=25)

> m.c4b <- MCMCglmm(sex~1,random=~dam,data=BTdata,

+ family="categorical",prior=prior.c32,verbose=F,

+ nitt=25000,burnin=5000,thin=25)

> plot(mcmc.list(m.c4a$VCV[,"dam"],m.c4b$VCV[,"dam"]),

+ col=c("red","green"))

> effectiveSize(m.c4a$VCV[,"dam"])

 var1

354.4503

> effectiveSize(m.c4b$VCV[,"dam"])

 var1

163.9470

Fig 73: Traces from Wishart (green) and parameter expanded (red) priors (see PDF version)

199

Clearly, mixing of the non-expanded model is poorer (see the lower sample size). Also,

the green trace on the above graph (see the electronic version) shows clear downward

trend. The red trace (reflecting parameter expansion) is fairly constant, with much

larger sample size associated. For more detailed formulation of parameter expansion

and excellent discussion on the subject see Gellman (2006).

Zero-inflated models (ZIP) and zero-altered (ZAP) models

In biology often we end up with data where our treatments had no effect on the

subject. It’s especially apparent for count data, generated by Poisson processes, and

binary data (binomial process). In such data, zeros occur often – and sometimes too

often. In MCMCglmm there’s one special class of distributions – zero-inflated

distributions – to deal with zero-inflation. Models built using ZIP in fact analyse two

separate traits (bivariate models). E.g. in zero-inflated Poisson (ZIP), first variable

models probability from a Poisson process, and second models probability (binomial)

that zero comes from a zero-inflated process (yes or no). We have to account for this

structure of effects in our (co)variance structure, remembering that covariance

between these two processes cannot be estimated as they never occur together in one

data point (hence rcov=~idh(trait):units). To illustrate we will fit a ZIP model to

data on PhD. Students’ publishing rates, related to different features of their

supervisors. Note two things: first – priors take into account bivariate nature of the

model (the diag(2) function); secondly – in model we use at.level(trait,1) to

indicate that we want to see the effect of all factors on the first level of the variable

trait (i.e. only for the real Poisson process and not for the zero-inflated process).

> ### code block C6

> #if not loaded

> library(MCMCglmm)

> install.packages(“pscl”); library(pscl)

> data(bioChemists)

> head(bioChemists) #see ?bioChemists for the description of the data

 art fem mar kid5 phd ment

1 0 Men Married 0 2.52 7

2 0 Women Single 0 2.05 6

3 0 Women Single 0 3.75 6

4 0 Men Married 1 1.18 3

5 0 Women Single 0 3.75 26

6 0 Women Married 2 3.59 2

> #it seems there are lots of zeros in art (number of papers/year)

> sum(bioChemists$art==0)/length(bioChemists$art)#more than 30% are zeros

[1] 0.3005464

> #end we'd expect only 18% under Poisson process

> ppois(0,mean(bioChemists$art))

[1] 0.1839859

200

> prior.c71 <- list(R=list(V=diag(2),nu=0.002,fix=2))

> m.c71 <- MCMCglmm(art~trait-1+at.level(trait,1):fem+

+ at.level(trait,1):mar+

+ at.level(trait,1):kid5+at.level(trait,1):phd+at.level(trait,1):ment,

+ rcov=~idh(trait):units,data=bioChemists,prior=prior.c71,

+ family="zipoisson",verbose=F)

Warning message:

In MCMCglmm(art ~ trait - 1 + at.level(trait, 1):fem + at.level(trait, :

 some fixed effects are not estimable and have been removed. Use singular.ok=TRUE to

sample these effects, but use an informative prior!

> plot(m.c71$Sol[,1:4]) #note poor mixing for zero-inflated process (2nd)

As you can see – fitting ZIP model is simple. However, even when we think we

need ZIP, it may be not really necessary – as seen here, based on naïve quantiles or

post-fitting check based on predicted values.

 Alternative for ZIP models can be found and it’s called Hurdle models. They’re

very similar to ZIP models in that they also model two variables. However, the first

one models the probability from zero-truncated Poisson distribution (Poisson process

without zeros; in ZIP it was just Poisson process distribution) and the second one

models binary process (yes or not) that the response is zero (in ZIP that was

probability that zero comes from zero-inflation). We will not cover Hurdle models

here but they should be considered as a reasonable alternative for ZIP models. See

Hadfield (2010b) for more details.

 Finally – there are situation when we might want to model both zero-inflation

and zero-deflation (less zeros than expected from Poisson process). These so called

ZAP models are very useful and provide additional dimension in analyses. Similarly to

ZIP models they are bivariate models. To fit a ZAP model one have to remember about

two things: the formula for fixed effects should be expressed as a simultaneous

interaction of the trait term and other terms; residuals should be in the form of

trait:units interaction, ensuring equal amounts of overdispersion in both modelled

traits. Below we fit simple ZAP model to the PhD data.

> ### code block C10

> m.c8 <- MCMCglmm(art~trait*(fem+mar+kid5+phd+ment),

+ rcov=~trait:units, data=bioChemists,

+ family="zapoisson", verbose=F)

> summary(m.c8)

 Iterations = 12991

 Thinning interval = 3001

 Sample size = 1000

201

 DIC: 3039.902

 R-structure: ~trait:units

 post.mean l-95% CI u-95% CI eff.samp

trait:units 0.3761 0.2574 0.5019 41.08

 Location effects: art ~ trait * (fem + mar + kid5 + phd + ment)

 post.mean l-95% CI u-95% CI eff.samp pMCMC

(Intercept) 0.329840 -0.020848 0.635959 199.9 0.068 .

traitza_art -0.530032 -1.060065 0.034144 119.8 0.074 .

femWomen -0.201981 -0.372851 -0.043369 402.8 0.016 *

marMarried 0.094844 -0.100929 0.261683 365.9 0.310

kid5 -0.140413 -0.268911 -0.010079 311.2 0.024 *

phd 0.013362 -0.074771 0.090847 311.3 0.746

ment 0.019686 0.012197 0.026658 444.5 <0.001 ***

traitza_art:femWomen 0.023808 -0.249587 0.288446 219.8 0.840

traitza_art:marMarried 0.145405 -0.135105 0.466840 233.6 0.324

traitza_art:kid5 -0.062199 -0.268586 0.154656 234.3 0.552

traitza_art:phd 0.007936 -0.137197 0.141371 132.5 0.904

traitza_art:ment 0.029625 0.012160 0.049018 105.7 0.002 **

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

202

Fig 74: First page of fixed-effects posteriors from a ZIP model; note poor mixing of the ZI process (traitzi_art)

Model yields two sets of parameters: original coefficients for Poisson process and

second set of coefficients for zero-altering process (if they’re zero – there’s no zero-

altering; if they’re negative – we detect zero-inflation, when they’re positive – there’s

zero-deflation). Interpretation is simple – the more papers our mentor produces, the

greater zero-deflation.

 When thinking about ZIP/ZAP models it is important to avoid unnecessary

complication. Although the data may look zero-inflated – simple check with observed

and predicted by Poisson distribution numbers of zeros may not be enough (Hadfield,

2010b). In the above example the proportion of zeros is roughly twice as large as

predicted by simple Poisson process. However we can use simple non-zero-inflated

model to obtain predictions about the number of zeros – and then compare them to

the observed number of zeros in the response variable. First – we fit simple non-ZIP

model to the data. We save the design matrix X to be able to extract predictions:

203

> ### code block C6 continued

> prior.c72<-list(R=list(V=1,nu=0.002))

> m.c72 <- MCMCglmm(art~fem+mar+kid5+phd+ment,data=bioChemists,

+ prior=prior.c72,family="poisson",verbose=F,saveX=T)

 After that we use solutions of fixed effects and the design matrix to obtain

point predictions and then using these predictions we generate 1000 Poisson-

distributed samples. Distribution of numbers of zeros in these samples clearly shows,

that our data (represented by thick line) doesn’t deviate from simple Poisson

distribution (Hadfield, 2010b)

> ob.zer <- sum(bioChemists$art==0) #observed number of zeros

> nr.zer <- 1:1000 #place for bootstrapped samples

> for(i in 1:1000) {

+ pred1 <- rnorm(915,(m.c72$X%*%m.c72$Sol[i,])@x,sqrt(m.c72$VCV[i]))

+ nr.zer[i]<-sum(rpois(915,exp(pred1))==0)

+ }

> hist(nr.zer,breaks=20)

> abline(v=ob.zer,lwd=2)

204

Fig 75: Histogram of samples from distribution of predicted numbers of zeros; black line represents observed
number of zeros

205

206

Short Guide to the Most Essential R

Functions

In the table below: LOGICAL – logical test, such as is.na(data) or data==1; ACTION – an

executable expression, such as data<-3 or lm(y~x) or 2+4; BODY – set of expressions;

path – access path to a file; [requires NAME] – installation of the NAME package is

reuired; FORMULA – formula object; MODEL – model object; NAME – any custom

NAME. Anu numbers indexing lists of commands in the first column are only for

reference and should not be used with commands provided.

Function and arguments Description and details

Operators and basic operations

!x, x|y, x&y, xor(x,y) NOT x, x OR y, x AND y, logical exclusive OR
on x, y

Comment line – not executed

+, -, *, /, %%, %/%, %*%, ^ add, subtract, multiply, divide, modulo,
integer division, matrix product, power

==, >, <, >=, <=, != Equal, smaller than, larger than, smaller or
equal, larger or equal, not equal

A -> B Assignemnt – B gets the value of A

abs(NAME) Absilute value

cor(NAME1,NAME2) Correlation of elemenets of two objects

cov(NAME1,NAME2) Covariance of elements of two objects

exp(NAME) Exponent (e
NAME

)

Inf, NA, NaN Infinity, missing value, not-a-number
variable

install.packages(“NAME”) Install a package “NAME”

is.na(NAME) Logical test if NAME is a missing value

207

library(NAME) Load a library NAME

list.files() List all files in the current working directory

log(NAME) Logarithm of NAME

ls() Display all object in the workspace

mean(NAME) Mean of elements of name

median(NAME) Median of elements of name

prod(NAME) Product of elements of NAME

quantile(NAME) Quantiles (median, minimum, maximum,
25% and 75% quantile)

round(x, digits=n) Round x to n digits

save(file=”NAME”) Save workspace to file

savehistory(file=”NAME”) Save history of commands to file

sd(NAME) Standard deviation of elements of NAME

search() Display the namespace and all loaded
packages and attached objects

setwd(path) Set working directory to path

sqrt(NAME) Square-root of NAME

sum(NAME) Sum of elements of NAME

T or TRUE, F or FALSE Logical variable – true or false

var(NAME) Variance of elements of NAME

Vector and matrix functions; data-type functions

as.vector(X), as.list(X),

as.matrix(X),

as.data.frame(X), as.array(X),

as.numeric(X),

as.character(X), as.logical(X)

as.factor(X)

Treat X as the type specified without
changing its type

c(a,b,c,d,...) Concatenate obejcts to a vector

class(), attributes() Check class and attributes of an object

cumprod(VECTOR) Cumulatiove product of elements of
VECTOR

208

cumsum(VECTOR) Cumulative sum of elements of VECTOR

det(MATRIX) Determinant of MATRIX

dim(ARRAY) Returns lengths of dimensions of ARRAY
(may also be matrix and data-frame)

eigen(MATRIX) Eigenvalue of MATRIX

fix(NAME) Opens window for manual edition of the
table NAME

is.vector(), is.list, etc. Logical test if object is of type specified

length(VECTOR) Number of elements in a VECTOR

max(NAME) Maximum value of NAME

min(NAME) Minimum value in NAME

names(NAME) Names of the elements of the vector or
variables of the data-frame – you can
assign new values

order(VECTOR) Returns permutation of elements that –
when applied as and index – sorts elements
of VECTOR ascending

paste(VECTOR, sep=”.”) Paste elements of VECTOR as a text string
using sep as separators (may also be “”)

range(VECTOR) The range of values

rank(VECTOR) Ranks of values

rev() Reverses a function, eg. Rev(sort(x)) sorts x
descending

rownames(NAME), colnames(NAME) Returns names of columnsand rows of
thematrix or data-frame; may also be used
for assigning names

sort(VECTOR) Sorts elements ascending

summary(NAME) Generic function, returns type-specific
summary

t(MATRIX) Transpose a matrix

which(VECTOR, LOGICAL) Indexes of elements satysying the condition
LOGICAL

Reading data; manipulating tables

$ e.g. data$name Accesses the variable using its name (in
data-frames)

209

[] e.g. data[2,3] Accesses column, row or element; in >2D
objects dimensions are specified in the
order: rows, columns, …; omitting one
dimension but retaining commas means
that we want the whole dimension
extracted

apply(matrix, 1 or 2, FUNCTION) Applies FUNCTION to rows (1) or columns
(2) of matrix

1. attach(NAME), detach(NAME)

2. detach(package:NAME)
1. Attaches or detaches an object
2. Detaches package NAME

boxcox(NAME) [requires MASS] Box-Cox transformation of
the data

cbind(x,y) Column-wise bind of two objects (numbers
of rowns must be the same)

na.omit(NAME) Returns object with NAs removed; in data-
frame whole rows in at least one NA are
removed

rbind(x,y) Row-wise bind two objects; numbers of
coulmns are the same

read.csv(file=path) Read CSV (comma-separated) file

read.delim2() Read file with commans as decimal
separators; arguments as in read.table()

read.table(path, header=T,

sep=”\t”, skip=N)
Read file in path, header=T sets the first
line as names of variables, sep sets the
character separating columns, skip skips N
first columns

subset(NAME, LOGICAL) Extract from data-frame NAME cases
satisfying LOGICAL condition, eg.
subset(data, sex==”M”)

table(group1, group2) Create contingency table counting cases in
grouping variables (one or two)

tapply(data, group, FUNCTION) Apply function to data group-wise

with(NAME, procedures) Alternative for attach; procedures use data
from NAME without the need of specifying
variable names by $

write.table(data, file=path,

sep=”\t”)
Save data to disc using filename path and
sep as column separator

210

Writing new functions

break Break lood and go outside to the next
operation

F <- function(ARGUMENTS) {BODY} Define function F, taking several
ARGUMENTS (names, comma separated),
executing some expressions using these
arguments in BODY

for (i in X) {ACTIONS}

for (i in X) ACTION
Loop – iterate through elements of X (may
be vector or range), for each execute
ACTIONS or single ACTION

1. if (LOGICAL) {ACTIONS}

2. if (LOGICAL) {ACTIONS}

 else {ACTIONS}

3. ifelse (LOGICAL,

 ACTIONS1, ACTIONS2)

1. Execute ACTIONS if LOGICAL is TRUE
2. See above, if FALSE execute else
3. Execute ACTIONS1 if LOGICAL is TRUE,
execute ACTIONS2 otherwise

next Stop iteration and go to the next one (does
not break the entire loop)

repeat {ACTION if (LOGICAL)

break}
Execute ACTION as long as LOGICAL
remains false

while (LOGICAL) {ACTIONS} Execute ACTIONS as long as LOGICAL
remains TRUE

Generating random data

rep(A, length.out=B, times=C,

each=D)
Repeat A C times, or as many times as
necessary to fill length.out; if each defined
– each element of A (if it’s a vector) will be
repeated D times; e.g.
rep(c(1,2),times=2,each=4) yields
1111222211112222

rnorm(N, mean, sd), pnorm(X,

mean, sd), qnorm(P, mean, sd),

dnorm(X, mean, sd)

Use normal distribution with parameters
mean and sd to: generate N random
samples (r); get probability x<=X (p); get
quantile X for P(x<=X) (q); get the density
function for X (d); see help for more
arguments, e.g. log=T yields log
transformed values

211

OTHER DISTRIBUTIONS

[add r, q, p or d; first argument

may be P, X or N]:

t(., df), f(., df1, df2),

binom(., size, probab),

pois(., lambda),

gamma(., shape, scale), chisq(.,

df),

nbinom(., size, probab, mu),

lnorm(., meanlog, sdlog),

hyper(., m, n, k),

geom(., probab),

multinom(., size, prob), logis(.,

location, scale), exp(., rate),

cauchy(., location, scale),

unif(., a, b)

t distribution, F, binomial, Poisson, gamma,
Chi-squared, negative binomial, lognormal,
hypergeometric, geometric, multinomial,
logistic, exponential, Cauchy, uniform. See
respective help files for more details and
arguments.

rTraitCont(tree, model, sigma,

alpha)
Simulate evolution along the tree
phylogeny, using selected evolution model,
sigma as standard deviation for random
process at each branching and alpha as
slelective force acting along the tree

rtree() Generate random tree; see help for more
details

sample(A, B, replace=T or F) Choose random sample of size B from
vector A, if replace TRUE each element will
may be sampled more tha once; executing
with replace=F and B>length(A) yields error

1. seq(A, B, by=C)

2. seq(A, B, length.out=C)

1. Generate numbers between A and B with
increment of by
2. Generate sequence between A and B of
the final length of length.out
If A>B the sequence is generated in
descending order

unique(A) Extract all unique values from A

Hypothesis testing
Most testing functions accept the following arguments: alternative=”two-sided” or “less”
or “greater” (one or two-tailed test); conf.level=0.95 specifying significance threshold.
binom.test(n_succ, n_trials, P) Binomial test for population with P

successes

212

chisq.test(x,y) or chisq.test(A) Accepts two vectors or a matrix
(contingency table)

cor.test(x,y,method) Correlation test; available methods:
spearman, kendall, pearson

fischer.test() Exact Fisher test, takes two vectors or one
matrix

kruskal.test() Kruskal-Wallis test; takes one list with
groups as subvectors, two vectors – one
with data nad one with group ids or
formula object

ks.test() Takes two vectors with data or one vector
and the name of distribution to test (e.g.
ks.test(x,pnorm)

prop.test() Propotion test

qqnorm(), qqline() Give quantile-quantile plot testing for
normality and adds a line to it

shapiro.test() Shapiro-Wilk test for normality, takes one
vector of data

t.test(A,B,var.equal=T or F,

paired=T or F)
t-test, takes two vectors of formula object

TukeyHSD() Tukey Honest Significant Difference; takes
anova or lm model object

var.test() Takes two vectors and compares variances
using F-test

wilcox.test(A,B,paired=T or F)

Wilcoxon signed-rank test – takes two
vectors

power.t.test(delta=A, sd=B,

power=C,

n=D, sig.level=E, alternative=F)

Power calculation. Specify all parameters
but one and it will be estimated based on
the remaning ones. See help for detailed
description of arguments.

Bootstrapping

a <- numeric(N)

for (i in 1:N) {

a[i] <- STATISTIC using

sample(data,replace=T) }

hist(a)

quantile(a, c(0.025, 0.975))

Sample bootstrapping with N
randomizations using sample function;
STATISTIC is the expression calculating the
value of test statistic; hist generates
histogram of bootstrapped samples;
quantile allow for hypothesis testing

213

FUNCTION <- function(A,i)

STAT(A[i])

BOOT <- boot(data, FUNCTION, N)

[requires boot] First, the FUNCTION is
defined – it calculates the test statistic.
Then it is bootstrapped.

boot.ci(BOOT) Confidence intervals from bootstrapping.

Linear models

FORMULA

1. y ~ x

2. x + y

3. x:y

4. x*y

5. x – y

6. x/y

7. 1

8. (x + y + z)^2

9. poly(x, 2, raw=T) or

 x+ I(x^2)

10. s(x)

11. lo(x)

1. Simple formula, with independent (x)
and dependent (y) variable
2. + defines additional variables
3. colon forms interaction
4. * fits interaction and all main effects
5. – removes a term
6. Slash defines nesting, from higher to
lower level
7. One represents intercept
8. Fits all two factor interactions of x, y, z
and main effects
9. Fits quadratic term of x
10. Uses smoother to fit x (in GAM)
11. Uses LOESS (local regression) to fit x (in
GAM)

lm(FORMULA, data=NAME, weights=A) Linear model for data, weights optional

predict(MODEL, newdata) Prediction from model; if newdata specified
(as additional data-frame) prdictions for
new values are made

resid(MODEL) Residuals from model

update(MODEL, ~. –A) Update model’s formula

summary(MODEL) Summary of model

plot(MODEL) Diagnostic plots

anova(MODEL) ANOVA table for model (if supported)

anova(MODEL1, MODEL2) Compare two models using ANOVA

gam(FORMULA, data) [requires mgcv] Additive linear models

tree(FORMULA, data) [requires tree] Tree regression models

plot(TREEMODEL), text(TREEMODEL)(Plots tree regression and adds text labels

214

step(MODEL) Stepwise simplification of MODEL based on
AIC

contrasts(DATA$FACTOR) Displays contrasts for factor variable

contrasts(DATA$FACTOR) <- metrix

of contrasts
Sets contrasts for factor variable

summary.lm(MODEL) Regression-like summary of a model

summary.aov(MODEL) ANOVA-like summary of a model

glm(FORMULA, data=NAME,

family=distribution name)
Generalized linear model with distribution
defined by family; possible values:
gaussian, poisson, binomial, exponential,
gamma, quasibinomial, quasipoisson.

MCMCglmm(

Fits generalized linear mixed models using
Markov Chain Monte Carlo method

y ~ fixed effects OR

cbind(y, z) ~ trait + fixed

effects,

Fixed effects formula; cbind() used if more
than two response variables; trait is a
restricted name indexing response
variables in multivariate models

random=~a + b OR

random=~idh(fixed):a +

us(fixed):b OR

random=~idh(trait):a +

us(trait):b,

Random effects formula; idh used for
covariance structures with covariances set
to zero; us used for (co)variance structures
with covariances not fixed; in random
effects – animal used for additive
genetic/phylogenetic effect in animal
models; be sure to create proper structure
in multivariate models (hence the ‘trait’
effect)

rcov=~idh(fixed):units, Optional, defines residual (co)variance
structure

data=NAME, Name of the data object

pedigree=NAME, Optional, name of the pedigree
datafile/phylogenetic tree from ape()

mev=NAME, Optional, in meta-analysis defines vector of
measurements error

family=NAMES OR

family=c(NAME,NAME),
Defines the type of distribution; c() used
when more than one response; not
necessary if gaussian

prior=NAME, Defines the name of the prior

saveX=T or F, saveZ=T or F, Saves (if T) design matrices for fixed and
random effects

pr =T or F, pl=T or F) Saves (if T) random effects (BLUPs) and

215

latent variables (fitted values on link scale)

my_prior <-

list(R=list(V=1,nu=0.002),

B=list(mu=0, V=1e+06),

G=list(G1=list(V=1,nu=0.002),

G2=list(V=1,fix1),

G3=list(V=1,nu=0.002,alpha.mu=0,

alpha.V=1000)))

Prior for MCMCglmm; R – priors for
residual variance; G – priors for random
effects (as many as there are random
terms); B – priors for fixed effects (if more
than one: mu=c(0,0,0), V=diag(3)*1e+06); B
is optional and required only in difficult
models (such as binary data with large
separation; see relevant chapters)

fitted(MODEL) Returns values fitted by model (equal to
predict() with no newdata argument)

lmer(

y ~ x + y + (1|a) + (fixed|b),

family=distribution name,

data=NAME)

Fits (generalized) linear mixed models using
REML; random effects formed by (X|...)

mcmcsamp(MODEL from lmer) [requires arm] Uses lmer object to create
MCMC samples for estimated parameters

Graphics and plots

plot(x,y OR y~x OR object,

Generic function for creating plots; takes
two vectors (x and y variables), a formula
object or a (model) object.

main, Graph title

xlab, x axis label

ylab, y axis label

xlim, Limits for x axis in the form of c(A,B)

ylim, Limits for y axis

cex.axis, Font size for axes’ ticks in points

cex.lab, Font size for axes’ labels in points

cex.main, Font size for graph’s label

cex, Size of graph’s points

pch, Type of points (see points() function)

lty, Line type for line plots (see lines())

lwd) Line width in pixels

abline(a=X,b=Y)

abline(h=A)
Adds line to a plot, by defining slope and
intercept (a,b), horizontal line for Y=A,

216

abline(v=B)

abline(lm model)
vertical line for X=B or line from a lm object

boxplot(Y~X) Creates boxplot fro data given group(X)-
wise

hist(X, freq=T or F, breaks=N) Histogram (with frequencies if freq=T), with
custom number of bars (breaks)

identify(x,y) Identifies points on the graph

legend(x,y,legend) Adds a legend to the graph

library(lattice) and

library(gplot)
Two libraries for high-level specialized
graphs (see manuals and help files)

lines(x,y,lty=N) Adds lines to a plot. Types of lines (lty):
lty=1 solid line
lty=2 dashed line
lty=3 dotted line
lty=4 dash-and-dot line
lty=5 broken line
lty=6 broken-and-dot line

locator(x) Identifies points on the graph

par(Sets graphical parameters (see figure
below)

font, 1-standard, 2-italic, 3-bold, 4-bold italic, 5-


mar, mai, Width of margins in Inches or lines, as four-

element vectors
mfrow, Sets number of columns and rows on the

plot
oma, omi, Widths of outer margins in Inches or lines,

as four-element vectors
din, fin, pin) Length and width of the image (in Inches or

lines) as two-element vectors
mfg Position of active figure in device with

multiple figures
persp(x,y,z) 3D plot, with x and y independent variables

and one dependent variable z
png(file=path) PLOTTING dev.off()

jpeg(file=path) PLOTTING

dev.off()

pdf(file=path) PLOTTING dev.off()

Using devices for saving graphs to graphic
files; can also be done using Save As menu
in the R Console (Windows/Mac OS)

217

points(x, pch=N) Adds points to the graph. Type of pints
(pch):

rainbow(N), heat.colors(N),

terrain.colors(N), cm.colors(N)
Generates color vectors of size = N

din[1]

din[2]

mai[1]

mai[2]

fin[2]

fin[1]

mai[3]

mai[4]

mfrow=c(1,2) omi[1]

omi[2]

omi[3]

omi[4]

pin[1]
pin[2]

din[2]

218

References

Adams D.C. 2007. Phylogenetic meta-analysis. Evolution, 62: 567-572.

Cornwallis et al. 2010. Promiscuity and the evolutionary transition to complex

societies Nature, 466: 969-972.

Crawley, M. 2010. The R book. Wiley-Blackwell.

Davey, J. 2009. R course for the Ashworth Laboratories. Edinbourgh, UK.

Diggle, P. et al. 2004. Analysis of longitudinal data. Oxford University Press.

Gelman, A. 2006. Prior distributions for variance parameters in hierarchical models.

Bayesian Analysis, 1: 515-533.

Gianola D. Sorensen D. 2004. Likelihood, Bayesian and MCMC methods in quantitative

genetics. Springer.

Hadfield, J. 2010a. MCMC-based methods for multi-response generalized linear mixed

models: the MCMCglmm R package. Journal of Statistical Software, 33: 1-22.

Hadfield, J. 2010b. Course Notes for the MCMCglmm package.

Michelson, A.A. 1880. Experimental determination of the velocity of light made at the

U.S. Naval Academy, Annapolis. Astronomical Papers, 1: 109-145.

R Development Team. 2009. R: A language and environment for statistical computing.

R Foundation for Statistical Computing, Vienna, Austria. ISBN 3-900051-07-0, URL

http://www.R-project.org.

219

220

Index

A

additive genetic variance, 86

AIC, 70, 71, 74, 75, 76, 78, 79, 80, 81,

82, 108, 115, 127, 150, 167

animal model, 86

pedigree, 78, 86, 87, 88, 90, 140, 144,

167

anova, 56, 62, 65, 68, 78, 81, 82, 83,

165, 166

anova (function), 62, 65, 83

ANOVA (test), 69, 72

aov, 62, 65, 72, 73, 78, 82, 167

ape (package), 12, 13, 135, 136, 138,

139, 144, 167

array, 23

attach (function), 31

autocorrelation, 66, 67, 114, 120, 128,

143

B

Bayesian statistics, 62, 76, 78, 79, 83,

105, 108, 111, 117

belief parameter (in MCMCglmm), 84, 88,

108

binary data, 12, 123, 126, 136, 156, 157,

167

binomial distribution, 49, 53, 75, 79, 90,

91, 113, 121, 127, 129, 155, 156, 164,

167

biplot, 94

boot (library), 58

bootstrapping, 56, 57

C

classical tests, 57

cluster analysis, 97

comparative analysis, 139

confidence band, 63

confidence intervals, 68, 84, 85, 89

console, 12, 13

contour plot, 106

contrasts, 72

covariance matrix, 83, 84

credible interval, 77

curvilinear data, 68

D

data diagnostics, 50

data-frame, 27

DIC, 77, 79, 84, 88, 89, 119, 121, 127,

132, 142, 145, 150, 157

distribution, 12, 22, 49, 51, 52, 53, 57, 61,

66, 67, 75, 76, 77, 78, 85, 86, 88, 89,

90, 91, 107, 108, 110, 111, 112, 113,

115, 124, 133, 135, 138, 143, 155,

157, 164, 165, 167, 168

E

evolution models, 138

F

factor analysis, 96

221

fixed effects, 62, 79, 80, 82, 85, 108, 117,

118, 151, 157, 167

formula, 61

functions, 16

G

gam (function), 62

general additive models, 67

generalized linear models, 73

genetic correlation, 88, 89, 141

ggplot2 (package), 43

glm (function), 62, 74, 75, 76, 78, 80,

107, 115, 127, 167

goodness of fit, 61, 62, 65, 153

H

hclust (function), 102

heritability, 85, 88, 89, 90, 141

hierarchical clustering, 101

high-level plotting functions, 36

histogram, 37, 38, 58, 168

homogeneity, 53, 65, 74, 153

hypothesis, 52, 54, 55, 57, 66, 89, 97,

129, 166

hypothesis testing, 49

I

independent comparisons, 73

influence, 66

interaction, 61, 69, 82, 86, 88, 129, 157,

166

intraclass correlation, 124

K

kmeans (function), 97, 98, 99

L

likelihood, 62, 79, 81, 83, 105, 106, 107,

108, 113, 138

likelihood ratio, 79, 81, 83

link function, 74, 75, 115

list (object), 25

lm, 62

lmer, 22, 62, 78, 79, 80, 81, 82, 83, 84,

86, 113, 129, 150, 168

loess (function), 62

logical subscript, 20

low-level functions plotting functions, 40

M

marginal distribution, 110

Markov Chain

MCMC, 77, 85, 90, 110, 113, 114,

155, 168

Markov Chain (method), 62, 76, 79, 108,

113, 167

matrix (object), 24

Maximum Likelihood (method), 77

MCMCglmm, 62, 77, 78, 79, 82, 83, 84,

86, 87, 88, 89, 90, 91, 92, 110, 111,

113, 114, 115, 116, 117, 118, 119,

120, 121, 122, 123, 127, 128, 129,

130, 131, 135, 139, 140, 141, 142,

144, 146, 148, 149, 155, 156, 157, 167

diagnostics, 113

meta-analysis, 141

mixed model, 79, 80, 81, 82, 86

multiple regression, 67, 69

N

NaN, 30

nonlinearity, 67

non-parametric tests, 57

normal distribution, 49, 67

normality, 51, 52, 65, 73, 165

O

orthogonal, 72

overdispersion, 75, 76, 79, 90, 91, 113,

115, 119, 157

additive, 76

multiplicative, 76

222

P

PCA, See principal component analysis

phylogenies, 135, 139

Newick format, 136

phylogenetically independent

contrasts, 139

trees, 138

Poisson distribution, 22, 49, 74, 75, 76,

77, 79, 91, 113, 115, 116, 119, 155,

156, 157, 158, 164

posterior distribution, 77, 110, 112

principal component analysis, 93

prior

improper, 84, 108, 112, 133

parameter expanded priors, 155

prior (in MCMCglmm), 84

Priors, 108

Q

q-q plot, 51

quadratic term, 68

R

random effects, 61, 77, 78, 79, 80, 82,

84, 86, 87, 88, 89, 90, 112, 113, 114,

117, 118, 147, 148, 150, 153, 167, 168

random regression, 146

regression, 42, 44, 45, 61, 62, 63, 68, 71,

72, 74, 78, 105, 125, 146, 166, 167

regression tree, 99

REML, 62, 78, 79, 80, 81, 82, 85, 86, 90,

107, 108, 111, 113, 150, 168

residual deviance, 76

residuals, 11, 63, 66, 67, 71, 74, 77, 78,

82, 88, 91, 115, 116, 119, 120, 140,

142, 151, 157

robust regression, 71

S

sample (function), 22

sort (function), 20

statistical modeling, 61

T

test

power, 56

Shapiro-Wilk, 51

t-Student, 52, 55

Wilcoxon signed rank, 54

tree regression, 69

V

variance, 20, 65, 73, 74, 75, 76, 77, 79,

81, 82, 83, 84, 85, 86, 88, 89, 90, 91,

94, 106, 108, 109, 110, 111, 112, 115,

117, 119, 123, 124, 125, 126, 129,

130, 132, 133, 135, 141, 142, 143,

148, 150, 151, 152, 153, 155, 156, 167

vectors, 19

W

working directory, 15, 16, 161, 162

workspace, 13, 15, 16, 41, 161, 162

Z

zero-inflated, 77, 79, 156, 157, 158

