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Preface 

In recent years biological and ecological applications of statistics reached a new level, 

both in the sense of sophistication of used techniques and of the theoretical 

knowledge of biologists. Software providers compete to improve their products and 

provide biologists with the most recent and advanced solutions. In spite of this fierce 

competition – there is just a handful of software packages worth consideration at the 

moment: SAS, SPSS, ASReml, S-PLUS. And last but not least – R. They’re all good, with 

their drawbacks and advantages – and they all have fans all over the world. However 

one simple factor – price – divides them into two major groups: R and everything else. 

If you will decide to work with R you’ll see that there are more division points – and 

that the choice of R is more than obvious. I hope that this volume will be of use to all 

that want to start their adventure with R and that they will discover its diverse 

applications and beautiful simplicity. 

What should not be expected from this book? First of all – it’s not a handbook. 

If you are looking for a complete description of all R’s features and utilities you should 

use more specific literature, such as excellent Crawley’s “The R Book”. Even with 

regard to subjects covered here, this book is far from being a step-by-step guide 

through the R’s environment. It is rather a record of two workshops on R that were 

held in the Institute of Environmental Sciences of the Jagiellonian University (the basic 

part) and in the Evolutionary Biology Centre of the Uppsala University (the advanced 

part). That is also the reason for which it’s written in English – both workshops were 

attended by people of different nationalities. One can think of it as a cook-book 

providing the necessary procedures with some statistical commentary, but without 

unnecessary details. Also, because of the limited space, only some issues were 

covered, bearing in mind the needs and requirements of most ecologists that begin 

their adventure with R. 

I hope you will find this book useful, no matter if you’re just starting with R or 

have already done something remarkable with it. I am also aware that mistakes and 

errors are inevitable, even in the best written handbook. If you come across any 

inconsistencies and errors – please let me know so that I could update the on-line 

erratum. All suggestions about the scope and usefulness of this text are also welcome! 

Acknowledgments 

I would like to thank all that helped to complete this text. Special thanks to all that 

attended my workshops – your questions were always stimulating and helped to 
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improve this book. I’m also thankful to Jarrod Hadfield who let me adapt some parts of 

his “Course Notes [onMCMCglmm]” in this text and to Michael Crawley who let me 

modify some of the datasets from his “The R Book”. I also adapted several datasets 

available on the Internet for the purposes of this book – you’ll find the list of relevant 

web-pages in the References section. 

 This publication was supported by the FRISC project, supported by the 

Financial Mechanism of the European Economic Area (you’ll find more about FRISC 

here: http://www.eko.uj.edu.pl/frisc). 

Technical note 

In order to be able to follow exercises from this book, you will need the necessary files 

(data sets etc.) Everything that’s required, together with the PDF version of the book, 

can be downloaded from the following website: 

http://www.eko.uj.edu.pl/drobniak/r.htm. Additionally, you can also download 

complete code for the Advanced part in the form of R-script files. Currently (March 

2011) it is not available for the Basic part, but it will become available as soon as the 

coding into the R-script files has been completed. 

http://www.eko.uj.edu.pl/frisc
http://www.eko.uj.edu.pl/drobniak/r.htm
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Part 1 ~ Getting started 

During this course you will learn how to use one of the most versatile and powerful 

statistical packages currently available – the R. The course will cover basics of R, 

essentials of its syntax and the most important mathematical and statistical functions. 

You will also learn how to create elegant graphs to illustrate your analyses. More 

advanced statistical issues will also be covered, including generalized linear and 

mixed models, multivariate statistics, phylogenetic analyses and they can be coupled 

with linear modeling. Finally, there will also be a short introduction to quantitative 

genetic analysis and other, more specific uses of statistics. 

 As R was derived from a well-established language S, it allows not only for 

statistical calculations. You could also use it as a mathematical modeling language, just 

in the same way as you would do with Matlab. Compared to Matlab, ASREML or S – R 

has one great advantage: it’s completely free and open-source. It means that you don’t 

have to pay for using it, you don’t even have to pay for scientific or commercial use of 

results obtained using R. Open source also means that anyone can access the source 

code of R or any R’s package. Thank to this there’s a great chance that someone 

already had the same problems you may have and looked through the source code – 

or wrote new package from a scratch – to solve this problem. In other words – usually 

you won’t have to laboriously invent your own way through your analyses; you’ll just 

need to find the right package among thousands of available, ready to use packages 

available through the CRAN website. So, let’s begin! 

 

Notation 

Throughout this book I will be using standard notation for all code blocks. While 

working with R, one have to remember about several simple rules: 

 lower and upper-case letters are distinguished so function has different 

meaning than FunCTioN; 

 there are no restricted keywords in R – but there are several names that are 

recommended to be used only in their default, built-in meaning; for good 

reasons avoid using the following words for your user-defined names: mean, 

sd, fix, random, units, residuals, animal, data, vector, factor, 

list, for, if, else, function, var; you’ll see some of them (eg. data) 

used later together with some additional letters, but never alone; 
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 when you do a lot of analyses in R it’s easy to get lost among dozens of objects 

and names – try inventing your own strategy of naming things in R and follow 

it strictly; it will spare you many stressful disappointments; 

 Within the block codes I will use some additional formatting to make reading 

the code easier; names of the functions will be in bold, arguments’ names 

within functions will be underlined, and everything else will be in non-

bold, non-italic font; outputs presented within block codes are in 

italics and using smaller font; I will use Courier as the font for block 

codes – it will prevent some tabular outputs from being incorrectly displayed 

 In R you can break lines to everything without the need for scrolling the 

window horizontally; in block codes, most code is broken into lines that fit the 

width of the printed page, but of course you can use your own line-breaking 

or nit use it at all; 

 R displays so called prompt: > at the beginning of every line; it’s also present 

in code blocks but remember to remove it (and also the broken line prompt: 

+) if you want to copy-and-paste code lines directly from the PDF version of 

this book; 

 quotation marks denote text variables in R; you can use either single or 

double quotation marks interchangeably, just remember not to mix them; 

 sometimes I use the # sign inside the block code to provide additional 

comments; lines beginning with the hash sign are not executed and you 

should obviously omit them executing the code, but most often they provide 

important notes on the code and should be read as integral parts of the text; 

for ease of reading I use shaded background in comments. 

R can be used in all most popular operating systems. As it is Unix-derived it is 

recommended to be used in Linux systems. Currently one of UNIX systems – Debian-

based Ubuntu – is very user friendly and it can be recommended for using with R. 

Advantages of using Ubuntu are several: you’re sure that no problems with file 

compatibility will occur; importing your data is much more straightforward; as R is 

run in basic Linux console – it operates much quicker (in Windows after running some 

complex analysis system for several seconds looks like crashed) and you can run 2-3 

instances of R simultaneously, which in Windows would cause system crash (provided 

you would be able to do this in Windows in the first place!). However, availability of 

Windows and it’s general popularity decided that most people use R in Windows, 

despite it’s obvious limitations and drawbacks. Here we will also use Windows 

environment, but you can easily ‘translate’ all commands and procedures to Linux- or 

MacOS-based R installations simply by translating all source paths into system-

specific syntax. 
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R is not very resource-demanding and can be easily run even on older machines 

– but beware! The more complex analysis you should try to run, the more memory- 

and processor-demanding it would be. Quickly you’ll realize that trying to analyse 

thousands of records with multiple responses and dozens of explanatory variables 

will be difficult using older PCs. If you plan to use R for elaborate and computer-

intensive applications – make sure your computer is well suited for this (at least 2 GHz 

processor and 1 GB of RAM). Otherwise it will be a rather disappointing experience... 

 

Downloading and installing R 

The software can be downloaded from the CRAN (The Comprehensive R Archive 

Network) webpage: http://cran.R-project.org. The package is downloaded as an 

ordinary binary file (.exe) that can be executed directly; it automatically installs R on 

your computer. In UNIX based systems you need to follow the usual way you use to 

install any other software; e.g. in Ubuntu you have to use Package Manager to find R in 

the repository and then install it on your system. After installation R is available for 

running as any other program. 

 Basic distribution of R contains the most essential and widely used packages 

(e.g. basic tests, procedures for mathematical calculations, graphing algorithms, 

generalized linear modelling tools). If you’d like to expand functionality of R (and 

most likely you will eventually have to do this) – you have to use once again the CRAN 

service – it contains most of available packages, together with their documentations, 

manuals, etc. Installing them in your R distribution is easy. Let’s assume you’d like to 

have the ape package (used for creating and handling phylogenetic data): 

> install.package(“ape”) 

After that this package is installed, but still not loaded. To use it just type 

> library(“ape”) #you can omit quoting marks here 

Now this package is loaded and ready to use. Loading external (non-standard) 

packages has to be done every time you start up R. To check which packages are 

loaded, just use 

> search() 

[1] ".GlobalEnv"        "package:stats"     "package:graphics"  

[4] "package:grDevices" "package:utils"     "package:datasets"  

[7] "package:methods"   "Autoloads"         "package:ape" 

 How can we know what package we need? Well, first of all – ask others. It’s 

very likely that someone already had similar problem as you and found out how  to 

solve it. Secondly, try using www.rseek.org – it’s a google based search engine 
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designed specifically for R users. If you already have a package or function and just 

want to know what it does – just use R’s help commands: 

> help(seq) 

> ?seq 

 If you’re not sure what you’re looking for – use global help search. R will 

search everything it has on the local machine and return most useful results. Here 

we’re looking for any idea how to do Spearman correlation test. R suggests the 

cor.test package, which turns out to be of use: 

> ??spearman 

> ?cor.test 

 

Using R. The R console. The workspace 

When you run R, you’ll see white console with some information at the top (such as 

current version, some basic info how to get help in R, how to cite your use of R, etc.) 

Under this you’ll see the command prompt: 

> 

It marks the place where you can enter your commands. E.g., if we enter: 

> (3+4)*12 

we’ll get 

[1] 84 

In other words, R works as command-line software and you cannot use menus and 

other Windows-like graphic-user-interface features to operate it. You simply write the 

command, hit Enter – and you get your result (or error message if something is 

wrong). R is also an interpreted language – you simply write your commands one by 

one and execute them in real time; it’s in clear opposition to compilator-based 

programming languages (such as C or Java) where you have to write the whole 

program, and then compile it to make it usable. 

 It is also essential to realize, that in R everything has its place in the 

computer’s memory (just like in any other programming language). You can name 

these memory places and assign values to them: 

> y <- (3+4)*12 

Now, the place called y is a variable, that contains the value of our arithmetical 

operation. The operator ‘<-‘ assigns the value on the right-hand side to the variable 
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on the left-hand side (however, you can use the reverse version). You can call this 

value by typing the name of the variable: 

 

> y 

[1] 84 

 

There are several rules for effective use of R environment: 

 When you want to provide a name (e.g. package name, file name, anything 

that is not a variable or factor name) – always do this by using quotation 

marks (“ ”or ‘‘). Single apostrophes are ‘stronger’ – double ones should be 

nested inside single ones if necessary. Always remember to close quotes once 

opened, and don’t mix different types of quotation marks. 

 If you want to find any previously executed command – just use up and down 

arrows on your keyboard; it allows you to browse through executed 

commands; if you’d like to stop browsing just hit Esc – it will clear the 

prompt. Browsing through previous commands is especially useful when you 

enter a wrong command; correcting it requires just hitting ‘up’ (it returns last 

entered command), then you can just correct any spelling errors and hit Enter 

once again. 

 The Tab key can be used to fill any started command, provided R knows the 

name or command (i.e. the name exists in its environment or required 

package has bee loaded). Try typing ‘cita’ and hitting Tab – R should 

complete command: ‘citation’; you can than end the command by using 

brackets. This function returns the proper way of citing R in papers. 

 
> cita #hit Tab 

> citation 

> citation() 

 

To cite R in publications use: 

 

  R Development Core Team (2009). R: A language and environment for 

statistical computing. R Foundation for Statistical 

  Computing, Vienna, Austria. ISBN 3-900051-07-0, URL http://www.R-

project.org. 

 

A BibTeX entry for LaTeX users is 

 

  @Manual{, 

    title = {R: A Language and Environment for Statistical Computing}, 

    author = {{R Development Core Team}}, 

    organization = {R Foundation for Statistical Computing}, 
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    address = {Vienna, Austria}, 

    year = {2009}, 

    note = {{ISBN} 3-900051-07-0}, 

    url = {http://www.R-project.org}, 

  } 

 

We have invested a lot of time and effort in creating R, please cite it when 

using it for data analysis. See also 

‘citation("pkgname")’ for citing R packages. 

 

 If you reach end of the line and don’t want the window space to ‘shift’ 

following your typing you can break the line by using Enter: just hit Enter 

after unfinished line (suggesting that something should be added, e.g. further 

parts of operation, closing brackets, etc.) Broken line is continued below, after 

leading ‘+’ (instead of ‘>’; remember that this plus sign does not imply any 

sum!) 
 

> 2+3+4+5*7/9- 

+ 2 

[1] 10.88889 

 

 Two or more commands can be executed at once – just enter one after 

another, separating them by semicolons: 

 

> 4-7; 76/33; "Hellow World"; log(1000) 

[1] -3  

[1] 2.303030 

[1] "Hellow World" 

[1] 6.907755 

 

 Any spaces are ignored – you can type as many as you want; in general you 

should use spaces to make your code easier to read – quickly you’ll realize it 

pays off! Also, for clarity try to use informative names. 

 
> ff34<-c(3,4,5,3,4,6,3,5,3,5,6,3) 

> seomd<-sd(ff34)/sqrt(12) 

 

> data <- c(3,4,5,3,4,6,3,5,3,5,6,3) 

> std.error <- sd(data)/sqrt(12) #isn’t that clearer? 

 

Everything you type or create during the R session is contained in so called 

workspace, a virtual place in the memory of your machine. Once you close R this 
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workspace disappears along with everything you’ve created. To prevent this from 

happening you might want to save the workspace. In fact, it is a good habit to save the 

workspace for any particular analysis and load it again later when you go on with you 

calculations. To save the workspace you’ll need to have your working directory, which 

is a folder on your computer that will contain any saved workspaces. Setting a 

working directory is simple: first, just create new empty directory on your disk drive 

(it’s better to do this somewhere on top of directory tree to shorten the source path 

for it).Then type: 

 

> setwd("D:/workingdir") 

> getwd() 

[1] "D:/workingdir" 

 

First command sets your working directory (you may choose any valid name for it), 

second one returns its address. Now, any time you quit R (by typing q()) – you’ll be 

asked if you want to save your workspace. By clicking Yes, you’ll create two files in 

your working directory: .RData and .Rhistory. The first one contains any objects 

you’ve created (e.g. y), the second one – all commands executed. After restarting R it 

will resume last saved workspace. Should you want to restore any other custom 

workspace just navigate to the proper working directory (using setwd(...)) and use 

below commands to restore objects, commands or both: 

> load(file=”.Rdata”) 

> loadhistory(file=”.Rhistory”) 

 

If you want, you can remove any object from your current workspace. Just type: 

> rm(y) 

> y 

Error: object 'y' not found 

 

If you don’t remember all the names you’ve created – just use the ls() function. It 

displays all objects in the current workspace (UNIX users should know see that R 

comes from UNIX). For times of despair you have the following code: 

 
> rm(list=ls()) 

 

but be careful as there will be no warning and all your objects will be irreversibly 

deleted. 
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 Finally, you don’t have to wait until the end of your R session to save your 

workspace. You can use the save(file=”.Rdata”) and savehistory(file= 

”.Rhistory”) functions – they will save objects and commands in the current 

working directory, using the names you provide. 

 

Functions 

Everything you use in R to manipulate objects is a function. It means, that everything 

has this form: function.name(arguments): { actions }. In other words, you’ll 

always find a name you can use to call a function. After being called, this function takes 

arguments you provide, doeas something with them (actions) and returns the result. 

E.g. you’ve already seen the function c(). It takes as many values (arguments) as you 

provide and concatenates them creating a vector: 

> myvector <- c(1,2,3,4,5,6,7,8) 

> myvector 

[1] 1 2 3 4 5 6 7 8 

 

 Of course, functions may do more sophisticated things. E.g. if you need a 

sequence of numbers generated with a specified interval, you should use the seq() 

function. Let’s check what it does? 

> sample <- seq(1,10,length.out=25) 

> sample #sequence of 25 numbers 

 [1]  1.000  1.375  1.750  2.125  2.500  2.875  3.250 

 [8]  3.625  4.000  4.375  4.750  5.125  5.500  5.875 

[15]  6.250  6.625  7.000  7.375  7.750  8.125  8.500 

[22]  8.875  9.250  9.625 10.000 

 

If you’d like to use function that does not exist – that’s not a problem! Just write one. 

Let it be the method for calculating arithmetic mean; let’s decide its name is mean: 

> mean <- function(x) {sum(x)/length(x)} 

> mean(sample) 

[1] 5.5 

 

 Importantly, when any function is called – anything that happens through this 

function, happens not in the R global environment, but within this function. As soon as 

functions finishes its work, any objects and variables required are destroyed as they 

exist only in the local place, inside this function. In other words – if we had a global 
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object called x it won’t be altered by the fact that our function mean also uses object 

called x to assign the data to it; this second object exists only inside this function: 

 

 

> x <- c(2,2,2) 

 

> add10 <- function(x) { #we define function that adds 10 to a number 

+   x <- x + 10 

+   x 

+ } 

 

> add10(x) 

[1] 12 12 12 

 

> x #should remain unaltered 

[1] 2 2 2 
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Part 2 ~ Data structures 

Vectors 

Vector is the most basic data structure in R. Simply, vector is a collection of variables, 

e.g. numbers, text variable, etc. Creating vectors is achieved by c() function. As you 

noticed before, any output in R begins with [1]. This is an index showing the position 

of the element within a vector. In general – you can call any particular element of an 

vector by giving its index number: 

> a <- c('a','b','c','d','e') 

> a[3] 

[1] "c" 

 

In R there are no scalars – everything is a vector (or a more complex structure); 

even single numbers are simply an one-element vectors. The most wonderful thing 

about vectors is that they largely eliminate the need for iterated operations as known 

in other languages. If we want to apply some function to every element of an vector, 

we simply enter this vector as an argument. 

> myvector <-  seq(1, 10, by=0.76) 

> myvector 

 [1] 1.00 1.76 2.52 3.28 4.04 4.80 5.56 6.32 7.08 7.84 

[11] 8.60 9.36 

 

> sqrt(myvector) #square root 

 [1] 1.000000 1.326650 1.587451 1.811077 2.009975 

 [6] 2.190890 2.357965 2.513961 2.660827 2.800000 

[11] 2.932576 3.059412 

 

> othervector <- c(1,2,3,4) 

> myvector + othervector 

 [1]  2.00  3.76  5.52  7.28  5.04  6.80  8.56 10.32 

 [9]  8.08  9.84 11.60 13.36 

 

Second example (sum of two vectors) shows one important feature of using vectors as 

arguments: if in a function one vector has fewer elements than needed – function uses 

its elements again from the beginning until it terminates. It’s called vector recycling – 

and you should remember it happens, especially when you forget to care about the 

length of vectors used as arguments. 
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Vectors can be handled using many built-in functions. Sometimes their 

application is quite straightforward and intuitive: 

> vector1 <- c(1,2,3,4,5,6,7) 

> vector2 <- c(2,2,3,3,4,4,5) 

 

> max(vector1) # maximum value 

[1] 7 

 

> min(vector2) # minimum value 

[1] 2 

 

> sum(vector1) # sum of elements 

[1] 28 

 

> mean(vector1) 

[1] 4 

 

> median(vector1) 

[1] 4 

 

> var(vector1) # variance 

[1] 4.666667 

 

> cor(vector1,vector2) # correlation between two vectors 

[1] 0.9707253 

 

> sort(vector1) # sorted version 

[1] 1 2 3 4 5 6 7 

 

> rev(sort(vector1)) # reversed-sorted vector 

[1] 7 6 5 4 3 2 1 

 

> rank(vector2) # ranks of vector elements 

[1] 1.5 1.5 3.5 3.5 5.5 5.5 7.0 

 

> quantile(vector2) # minimum, lower quantile, median,  

                    # upper q. and max 

  0%  25%  50%  75% 100%  

 2.0  2.5  3.0  4.0  5.0  

 

> pmax(vector1,vector2) # for every position – maximum value 

                        # from all supplied vectors 

[1] 2 2 3 4 5 6 7 

 

> cumprod(vector1) # for each element – cumulative product 

[1]    1    2    6   24  120  720 5040 

 

> length(vector1) 

[1] 7 
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 Arithmetic is not the only thing we can do with vectors. We can also apply 

logical operations – which will be further very useful while handling and filtering our 

own data. We could want to square root only even numbers in our vector. This can be 

achieved by the operator of modulo, which either returns an integer part of the 

division or the reminder: 

> 23%/%6 #integer division 

[1] 3 

> 23%%6 #reminder 

[1] 5 

 

By checking the remainder after diving by 2 we can check if the number is odd 

(remainder 1) or even (remainder 0): 

> 6%%2 == 0 # even 

[1] TRUE 

> 7%%2 == 0 # odd 

[1] FALSE 

 

Now – let’s square-root even number within the range between 0 and 50: 

> samp <- 0:50 

> sqrt(samp[samp%%2 == 0]) 

 [1] 0.000000 1.414214 2.000000 2.449490 2.828427 

 [6] 3.162278 3.464102 3.741657 4.000000 4.242641 

[11] 4.472136 4.690416 4.898979 5.099020 5.291503 

[16] 5.477226 5.656854 5.830952 6.000000 6.164414 

[21] 6.324555 6.480741 6.633250 6.782330 6.928203 

[26] 7.071068 

 

Now let’s translate. First we generated numbers from 0 to 50. Then we checked which 

of them are even by using modulo: 

> samp%%2 

 [1] 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 

[26] 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 

[51] 0 

 
> samp%%2 == 0 

 [1]  TRUE FALSE  TRUE FALSE  TRUE FALSE  TRUE FALSE 

 [9]  TRUE FALSE  TRUE FALSE  TRUE FALSE  TRUE FALSE 

[17]  TRUE FALSE  TRUE FALSE  TRUE FALSE  TRUE FALSE 

[25]  TRUE FALSE  TRUE FALSE  TRUE FALSE  TRUE FALSE 

[33]  TRUE FALSE  TRUE FALSE  TRUE FALSE  TRUE FALSE 

[41]  TRUE FALSE  TRUE FALSE  TRUE FALSE  TRUE FALSE 
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[49]  TRUE FALSE  TRUE 

 

Finally we used these logical numbers as indexes to choose only even values (those 

returning TRUE in our logical test) and square-rooted them: 

> samp[samp%%2 == 0] 

 [1]  0  2  4  6  8 10 12 14 16 18 20 22 24 26 28 30 

[17] 32 34 36 38 40 42 44 46 48 50 

 
> sqrt(samp[samp%%2 == 0]) 

 [1] 0.000000 1.414214 2.000000 2.449490 2.828427 

 [6] 3.162278 3.464102 3.741657 4.000000 4.242641 

[11] 4.472136 4.690416 4.898979 5.099020 5.291503 

[16] 5.477226 5.656854 5.830952 6.000000 6.164414 

[21] 6.324555 6.480741 6.633250 6.782330 6.928203 

[26] 7.071068 

 

Sometimes using logical operations may be simpler by generic functions, e.g.: 

> which(samp%%2 == 0) 

 [1]  1  3  5  7  9 11 13 15 17 19 21 23 25 27 29 31 

[17] 33 35 37 39 41 43 45 47 49 51 

 

Here we asked simply which elements are even and got the list of indexes for such 

elements. Of course, in the above functions we might as well use other logical 

operators; the following are available: >, <, ==, <=, >=, != (not equal to), | (logical OR, 

returns TRUE if either of expressions is TRUE), & (logical AND, returns TRUE if both 

expressions are TRUE). 

 

Other vector functions 

There are several useful functions operating on vectors or returning vectors. You’ve 

already seen seq(): 

> seq(10, 30, length.out=8) 

[1] 10.00000 12.85714 15.71429 18.57143 21.42857 

[6] 24.28571 27.14286 30.00000 

 

Instead of using output length we could specify the interval (argument by) – which 

can also be negative (numbers will be in descending order): 
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> seq(30, 10, by=-8) 

[1] 30 22 14 

 

The function sample() can be used to shuffle elements of a vector and generate 

random samples, either with or without replacement: 

> sample(vector1) 

[1] 6 5 1 4 3 2 7 

> sample(vector1,10) 

Error in sample(vector1, 10) :  

  cannot take a sample larger than the population when 'replace = FALSE' 

> sample(vector1,10,replace = T) 

 [1] 2 1 1 5 2 5 6 2 2 2 

 

Another extremely useful function working on vectors is function for looking 

for runs of numbers in vectors. Let’s generate a vector of 20 random numbers from 

Poisson distribution and look for runs of numbers in it: 

> poiss <- rpois(20,0.7) 

> poiss 

 [1] 0 0 0 1 1 0 0 1 1 1 0 0 0 1 1 2 2 0 1 1 

> rle(poiss) 

Run Length Encoding 

  lengths: int [1:9] 3 2 2 3 3 2 2 1 2 

  values : num [1:9] 0 1 0 1 0 1 2 0 1 

 

You can see that the longest runs are of three digits and one of them consists of zeros, 

and the second one of ones. 

 Finally we can use rep() to generate repeats of numbers of different kinds. 

I’ll leave exploring it’s usability to you – try ?rep. 

 

Generic functions 

R offers several so-called generic functions. They work with nearly all types of R 

objects and return outputs that are specific to handled objects. You can check 

respective summary functions, e.g. summary.lmer() is a summary functions designed 

for lmer() output objects. However, the simpler way is to just use summary(object) 
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– in such a case the function related to the type of an “object” will be called. The most 

important generic functions are as follows: summary(), mode(), attributes(), 

class(). How can we use them? 

 The summary() function return the descriptive summary of an object, e.g. 

descriptive statistics for data objects, analysis results for model objects or just the list 

of object’s internal attributes. As mentioned before, every R object has its own specific 

summary function, e.g. for a vector: 

> vector1 <- sample(1:100, size = 20) 

> summary(vector1) 

   Min. 1st Qu.  Median    Mean 3rd Qu.    Max.  

   1.00   15.25   52.50   47.15   73.00   97.00 

 

 The next three functions provide information about the type of information 

stored in an object and about its attributes. Their usefulness will become clearer when 

additional data types will be introduce. In case of vectors the only useful is the mode() 

function – it returns the type of stored data (numbers, text, etc.) The class() function 

would return exactly the same, whereas the attributes() function will return NULL: 

as the most basic data structures in R, vectors don’t have any attributes: 

> vector2 <- c('A','B','C') 

> mode(vector1); mode(vector2) 

[1] "numeric" 

[1] "character" 

 

 The most obvious way of using these functions is the logical test to check if 

our data are of the required type: 

> if(mode(vector2) == "character") "All OK!" 

[1] "All OK!" 

 

Other data structures in R 

Vectors are the simplest data-types in R – and probably the most widely used. 

However we should know more complex data structures as they will allow for more 

sophisticated and less cumbersome manipulation of numbers. 

 Arrays are used probably as often as vectors. They can be regarded as 

generalisation of vectors to cases of more than one dimension. Thus, there can be 2-

dimensional arrays (a “grid” of cells), 3-dimensional arrays (a “cube” of cells), 4-

dimensional tables, and so on. Probably somewhere around the 4th or 5th dimension 
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our imagination will start failing. Luckily – in R arrays are not displayed in the form of 

monstrous pseudo-3D things – R uses much simpler, flat representation. All 

information about the number of arrays’ dimensions are stored in their attributes and 

we can extract them using attributes(): 

> months <- c("Jan","Feb", "Mar", "Apr", "May", "Jun", "Jul", "Aug",  

+ "Sep", "Oct", "Nov", "Dec") 

 

> array(months, c(3,4)) #2D array 

#we use a vector [3,4] to specify dimensions 

     [,1]  [,2]  [,3]  [,4]  

[1,] "Jan" "Apr" "Jul" "Oct" 

[2,] "Feb" "May" "Aug" "Nov" 

[3,] "Mar" "Jun" "Sep" "Dec" 

 

> array(months, c(2,6)) 

     [,1]  [,2]  [,3]  [,4]  [,5]  [,6]  

[1,] "Jan" "Mar" "May" "Jul" "Sep" "Nov" 

[2,] "Feb" "Apr" "Jun" "Aug" "Oct" "Dec" 

 

> array(months, c(3,2,2)) #3D array 

, , 1 

 

     [,1]  [,2]  

[1,] "Jan" "Apr" 

[2,] "Feb" "May" 

[3,] "Mar" "Jun" 

 

, , 2 

 

     [,1]  [,2]  

[1,] "Jul" "Oct" 

[2,] "Aug" "Nov" 

[3,] "Sep" "Dec" 

 

> attributes(array(months, c(4,3))) 

$dim 

[1] 4 3 

 

> class(array(months, c(4,3))) 

[1] "matrix" 

 

> class(array(months, c(2,2,3))) 

[1] "array" 

 

> matrix(months, c(2,6)) 

     [,1]  [,2]  [,3]  [,4]  [,5]  [,6]  

[1,] "Jan" "Mar" "May" "Jul" "Sep" "Nov" 

[2,] "Feb" "Apr" "Jun" "Aug" "Oct" "Dec" 

 

As you could see – a 2-dimensional array is a special data structure in R and is 

called a matrix, which should not be surprising. After all – matrices are very common 
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in data analysis. Instead of using array() we can use respective matrix() function. 

Both data structures are similar and contain the $dim attribute. 

> attributes(array(months, c(2,2,3))) 

 

$dim 

[1] 2 2 3 

 

When working with arrays (and matrices) one should remember about some 

important rules. Every time we call an object within an array, we do it by specifying 

the row and column numbers, row number first. There’s one confusing consequence 

of this rule – if we look at any of the matrices above, it’s apparent that columns are 

filled from top to bottom. It might seem strange but once we realize that R iterates 

through rows first, it becomes clear: the filling of a matrix proceeds row by row (as 

rows are called first) and then – having reached the bottom of a column – R jumps to 

the next column. 

Technically, calling an element from an array means writing it’s indexes (as 

many as there are dimensions) in square brackets, in the order explained above, 

separated by commas. We may as well use single index – in such a case the whole 

array will be treated as a single vector (again, with the order of elements determined 

in a way already described). 

> mon.arr <- array(months, c(2,2,3)) 

> mon.arr[2,1,2] 

[1] "Jun" 

> mon.arr[5] 

[1] "May" 

 

If we omit any of the dimensions retaining commas – the result will be the 

whole dimension (the one for which there’s no index) extracted: 

> mon.arr[2,1,] 

[1] "Feb" "Jun" "Oct" 

> mon.arr[2,,2] 

[1] "Jun" "Aug" 

> mon.arr 

, , 1 

 

     [,1]  [,2]  

[1,] "Jan" "Mar" 

[2,] "Feb" "Apr" 
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, , 2 

 

     [,1]  [,2]  

[1,] "May" "Jul" 

[2,] "Jun" "Aug" 

 

, , 3 

 

     [,1]  [,2]  

[1,] "Sep" "Nov" 

[2,] "Oct" "Dec" 

 

There are many functions that work only with matrices (and not with arrays), 

such as: t() – which transposes a matrix, “reflecting” it relatively to its diagonal; 

ncol() and nrow() – which returns the number of rows or columns. 

Another important data structure is a list. Sometimes it’s more useful than the 

vector as it may store objects of different types. Try building a vector made of text, 

numbers and logical values. Is it possible? 

> mix.vec <- c(1,2,'a','nie chce mi sie') 

> mix.vec 

[1] "1"    "2"    "a"    "nie chce mi sie" 

 

No! R automatically converts numbers to ASCII characters. We have to use lists in 

order to be able to store these values unaltered: 

> mix.list <- list(1,2,'a','nie chce mi sie') 

> mix.list 

[[1]] 

[1] 1 

 

[[2]] 

[1] 2 

 

[[3]] 

[1] "a" 

 

[[4]] 

[1] "nie chce mi sie" 

 

R puts our variables into the list (note lack of quoting marks around numbers, 

i.e. they really are numbers). All elements are also given additional indexes within a 

list, indicated by double square brackets. Each of these sub-elements is in fact a vector. 

Consequently, if one wish to call an element inside a list, they should use double 

square brackets around the indexes. It may lead to somehow complex indexing 
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structures as nesting one list inside the other creates the need for double list indexes 

(i.e. doubled double square brackets): 

> mix.list <- list(1,2,'a','nie chce mi sie', 

+ c(33,44),list('nested')) 

> mix.list 

[[1]] 

[1] 1 

 

[[2]] 

[1] 2 

 

[[3]] 

[1] "a" 

 

[[4]] 

[1] "nie chce mi sie" 

 

[[5]] 

[1] 33 44 

 

[[6]] 

[[6]][[1]] 

[1] "nested" 

 

 

> mix.list[[5]] 

[1] 33 44 

 

> mix.list[[5]][2] 

[1] 44 

 

> mix.list[[6]] 

[[1]] 

[1] "nested" 

 

> mix.list[[6]][[1]] 

[1] "nested" 

Another useful feature of vectors and matrices is the possibility of naming 

their elements/rows/columns. Having done so we can use these names instead of 

indexes when calling object’s elements: 

> sunny.days.krakow <- c(10,9,13,14,23,20,29,27,26,18,5,3) 

> names(sunny.days.krakow) <- months 

 

> sunny.days.krakow 

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec  

 10   9  13  14  23  20  29  27  26  18   5   3 

 

> sunny.days.krakow["Feb"] 

Feb  

  9 



32 
 

 

> mon.matrix <- matrix(months, c(4,3)) 

> colnames(mon.matrix) <- c("1st","2nd","3rd") 

> rownames(mon.matrix) <- c("top","middle1","middle2","bottom") 

 

> mon.matrix 

        1st   2nd   3rd   

top     "Jan" "May" "Sep" 

middle1 "Feb" "Jun" "Oct" 

middle2 "Mar" "Jul" "Nov" 

bottom  "Apr" "Aug" "Dec" 

 

When the elements, rows or columns have been names, an object gets the 

$names attribute, which contains them: 

> attributes(sunny.days.krakow) 

$names 

[1] "Jan" "Feb" "Mar" "Apr" "May" "Jun" "Jul" "Aug" "Sep" "Oct" "Nov" "Dec" 

 

Arrays and lists are not the only complex data types in R. Another important 

structures are factors. They are used to define categorical variables – such as used in 

conventional ANOVA. In factors, numbers are not interpreted as numbers but rather 

as factor levels (categories). Below we use employ factors to define the cloud cover 

during subsequent hours of the day. Cloud cover is measured using a 8-degrees scale 

and we might be interested in counting occurrences of a particular degree within our 

dataset rather than in treating these measurements as continuous. In other words – 

we might prefer expressing cloud cover in nominal scale, hence – as factors. The 

summary() function called for a factor object returns counts in respective levels 

instead of descriptive statistics known for continuous variables: 

> cloud.cover <- c(8, 7, 4, 8, 1, 1) 

> names(cloud.cover) <- c(0400, 0800, 1200, 1600, 2000, 0000) 

> cloud.cover 

 400  800 1200 1600 2000    0  

   8    7    4    8    1    1  

> summary(cloud.cover) 

   Min. 1st Qu.  Median    Mean 3rd Qu.    Max.  

  1.000   1.750   5.500   4.833   7.750   8.000  

> cloud.cover <- factor(cloud.cover) 

> summary(cloud.cover) 

1 4 7 8  

2 1 1 2  

> levels(cloud.cover) #may be used for assigning new level names 

[1] "1" "4" "7" "8" 
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Class-control functions 

R provides several functions for controlling the class of objects. We’ve seen some of 

them already – these were functions used for generating respective objects: 

matrix(), list(), factor(), array(), data.frame() (more on data-frames in the 

next section). Their arguments are usually single values or vectors of values, and 

sometimes additional parameters modifying the way these functions work. However – 

their output is “permanent” – a new instance of the respective data objects is created. 

However, it might as well be useful to treat an object as if it was of other type, just for 

the purposes of the current procedure. To achieve this we can use as-functions: 

> vector <- c(1,1,2,2,1,3,4) 

> as.factor(vector) 

[1] 1 1 2 2 1 3 4 

Levels: 1 2 3 4 5 

 

> as.matrix(vector) 

     [,1] 

[1,]    1 

[2,]    1 

[3,]    2 

[4,]    2 

[5,]    1 

[6,]    3 

[7,]    4 

 

> as.data.frame(vector) 

  vector 

1      1 

2      1 

3      2 

4      2 

5      1 

6      3 

7      4 

Another important group of functions are is-functions, which allow for testing 

the type of an object: 

> is.vector(vector) 

[1] TRUE 

> is.factor(vector) 

[1] FALSE 

 

Data-frames 

We have reached probably the most essential section on data types in R and that 

would be the data-frame. They’re usually used to store data obtained in regular 

research. Each data-frame contains several columns called variables, each reflecting 
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one particular quantity measured. Variables have names, stored in the $names 

attribute. Rows (or subsequent cases/data points) also may be named ($row.names), 

but by default they are numbered consecutively. 

Let us enter simple data-frame; it contains data for silk production by 

silkworms (current production), together with respective variables describing the sex 

of individuals, number of days it had been producing silk, humidity of the 

environment, silk production of their parents (previous production). Hence, rows of 

the table represent individual caterpillars. 

> silk.production <- data.frame( 

+ 'sex' = c(1,2,2,1,1,1,1,2,2,2,1,2,1,2,1), 

+'no.days' = c(10,12,8,21,20,13,18,19,20,20,10,7,9,12,12), 

+ 'humid' = c(100,100,90,89,88,78,79,90,88,90,87, 

+ 90,76,56,78), 

+ 'prev.prod'=c(100,340,546,234,432,765,432,318,287, 

+ 190,223,210,218,220,431), 

+ 'curr.prod'=c(34,45,38,76,54,28,56,98,67,32,22,10,23,43,8)) 

 

> silk.production 

   sex no.days humid prev.p curr.p 

1    1      10   100    100     34 

2    2      12   100    340     45 

3    2       8    90    546     38 

4    1      21    89    234     76 

5    1      20    88    432     54 

6    1      13    78    765     28 

7    1      18    79    432     56 

8    2      19    90    318     98 

9    2      20    88    287     67 

10   2      20    90    190     32 

11   1      10    87    223     22 

12   2       7    90    210     10 

13   1       9    76    218     23 

14   2      12    56    220     43 

15   1      12    78    431      8 

 

> summary(silk.production) 

      sex           no.days          humid            prev.p      

 Min.   :1.000   Min.   : 7.00   Min.   : 56.00   Min.   :100.0   

 1st Qu.:1.000   1st Qu.:10.00   1st Qu.: 78.50   1st Qu.:219.0   

 Median :1.000   Median :12.00   Median : 88.00   Median :287.0   

 Mean   :1.467   Mean   :14.07   Mean   : 85.27   Mean   :329.7   

 3rd Qu.:2.000   3rd Qu.:19.50   3rd Qu.: 90.00   3rd Qu.:431.5   

 Max.   :2.000   Max.   :21.00   Max.   :100.00   Max.   :765.0   

 

     curr.p      

 Min.   : 8.00   

 1st Qu.:25.50   

 Median :38.00   

 Mean   :42.27   

 3rd Qu.:55.00   

 Max.   :98.00 
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It’s obvious that the sex variable should be categorical rather than continuous. 

We can access this variable either by selecting the first column or by using the 

variable’s name. The rule here is the same as in the case of matrices – first we indicate 

the row, then the column. Omitting one index means that we want to extract the whole 

row/column. 

> silk.production[10,1] 

[1] 2 

> silk.production[,1] 

 [1] 1 2 2 1 1 1 1 2 2 2 1 2 1 2 1 

> silk.production$sex 

 [1] 1 2 2 1 1 1 1 2 2 2 1 2 1 2 1 

 

Zmieńmy zatem typ danych w kolumnie z płcią: 

> silk.production$sex <- as.factor(silk.production$sex) 

> summary(silk.production) 

 sex      no.days          humid            prev.p          curr.p      

 1:8   Min.   : 7.00   Min.   : 56.00   Min.   :100.0   Min.   : 8.00   

 2:7   1st Qu.:10.00   1st Qu.: 78.50   1st Qu.:219.0   1st Qu.:25.50   

       Median :12.00   Median : 88.00   Median :287.0   Median :38.00   

       Mean   :14.07   Mean   : 85.27   Mean   :329.7   Mean   :42.27   

       3rd Qu.:19.50   3rd Qu.: 90.00   3rd Qu.:431.5   3rd Qu.:55.00   

       Max.   :21.00   Max.   :100.00   Max.   :765.0   Max.   :98.00 

 

Applying functions and transformations to whole datasets is as easy as working 

with single vectors. Here we calculate the mean daily production of silk for each 

individual and add it as a new variable to the data-frame: 

> average.p <- silk.production$curr.p / silk.production$no.days 

> average.p 

 [1] 3.4000000 3.7500000 4.7500000 3.6190476 2.7000000 2.1538462 

 [7] 3.1111111 5.1578947 3.3500000 1.6000000 2.2000000 1.4285714 

[13] 2.5555556 3.5833333 0.6666667 

 

> cbind(silk.production, average.p) 

   sex no.days humid prev.p curr.p average.p 

1    1      10   100    100     34 3.4000000 

2    2      12   100    340     45 3.7500000 

3    2       8    90    546     38 4.7500000 

4    1      21    89    234     76 3.6190476 

5    1      20    88    432     54 2.7000000 

6    1      13    78    765     28 2.1538462 

7    1      18    79    432     56 3.1111111 

8    2      19    90    318     98 5.1578947 

9    2      20    88    287     67 3.3500000 

10   2      20    90    190     32 1.6000000 

11   1      10    87    223     22 2.2000000 
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[...clipped...] 

We can further extend operations on data-frames to joining several columns or 

rows together. The cbind() function joins two vectors column-wisely whereas the 

rbind() joins the vectors row-wisely. Of course, we can use these on whole datasets 

to add new cases or variables. It’s important that the elements of the vector being 

added contained elements in the right order! 

Data-frames can be filtered in the same way as vectors. E.g. we can extract the 

data on the production of silk only for females (category “2” in sex): 

> silk.production[silk.production$sex==2,] 

   sex no.days humid prev.p curr.p 

2    2      12   100    340     45 

3    2       8    90    546     38 

8    2      19    90    318     98 

9    2      20    88    287     67 

10   2      20    90    190     32 

12   2       7    90    210     10 

14   2      12    56    220     43 

 

Note the position of the logical condition – the test is applied to rows as we want to 

have WHOLE rows that contains appropriate value in the second (sex) column. 

Indexing can be used to sample our data-frame randomly, e.g. in randomization 

methods. We can use the sample() function here: 

> silk.production[sample(1:15,5),] 

   sex no.days humid prev.p curr.p 

12   2       7    90    210     10 

5    1      20    88    432     54 

8    2      19    90    318     98 

13   1       9    76    218     23 

2    2      12   100    340     45 

 

Sorting data-frames according to particular variables is also simple. Note that 

the only thing one have to do is to sort row indexes – that’s why sorting expression 

appears in the place of rows: 

> silk.production[order(silk.production$no.days),] 

   sex no.days humid prev.p curr.p 

12   2       7    90    210     10 

3    2       8    90    546     38 

13   1       9    76    218     23 

1    1      10   100    100     34 

11   1      10    87    223     22 

2    2      12   100    340     45 

14   2      12    56    220     43 

15   1      12    78    431      8 

6    1      13    78    765     28 

7    1      18    79    432     56 
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8    2      19    90    318     98 

5    1      20    88    432     54 

9    2      20    88    287     67 

10   2      20    90    190     32 

4    1      21    89    234     76 

 

If one want to remove data from a data-frame it can be done by using negative 

subscripts: this indicates the numbers of rows that should be deleted. The minus sign 

may also be applied to the whole logical condition – in such a case rows or columns 

satisfying the condition will be deleted (note that the same could be achieved by 

filtering the data-frame with the “not equal to” (!=) operator). Here we remove the 3rd 

and 4th rows and then all records of females: 

> silk.production[-(3:4),][-which(silk.production$sex==2),] 

   sex no.days humid prev.p curr.p 

1    1      10   100    100     34 

6    1      13    78    765     28 

7    1      18    79    432     56 

8    2      19    90    318     98 

9    2      20    88    287     67 

13   1       9    76    218     23 

15   1      12    78    431      8 

 

Finally, it might be the case that we want to remove all missing data points 

(records containing NA’s). To do this we use na.omit() function:  

> missing <- data.frame(‘var1’=c(1,2,3,4,5,6,NA), 

+ ‘var2’=c(2,2,2,NA,NA,2,2)) #sample data with NAs 

> missing 

  var1 var2 

1    1    2 

2    2    2 

3    3    2 

4    4   NA 

5    5   NA 

6    6    2 

7   NA    2 

> na.omit(missing) 

  var1 var2 

1    1    2 

2    2    2 

3    3    2 

6    6    2 

 

NaN or Not-A-Number 

Sometimes R operates on values that are not numbers, such as missing values or 

division-by-zero outputs:  

> 2/0 
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[1] Inf 

Here the infinity (the result of dividing by zero) is a non-numerical value. Such values 

can seriously hamper our work wince many functions return NaNs after encountering 

even single NaNs in the set of values. One possible solution for this problem is using 

the na.rm argument, that is provided by several R functions and lets them ignore 

non-numerical values: 

> x <- c(2,3,4,5,6,NA) 

> var(x,na.rm=T) 

[1] 2.5 

> var(x) 

[1] NA 

 

If for some reason one want to check is the value is NA (e.g. to filter out such 

values from a dataset) do not try to use conventional logical test, i.e. A!=NA as it won’t 

work. Instead, use the class-controlling function is.NA(A). 

 

Attach() and with() – a digression 

You have probably noted that in data-frames we used the usual way of calling 

variables, that is using the dollar operator. However the need for providing the whole 

name of the table may be annoying. That’s why you might want to use the attach() 

function. It allows for attaching the whole object to the namespace we are currently 

working in. Names of all variables become available without the need of using the 

dollar operator and invoking the name of the table. Compare: 

 

> silk.production$prev.p 

 [1] 100 340 546 234 432 765 432 318 287 190 223 210 218 220 431 

> attach(silk.production) 

> prev.p 

 [1] 100 340 546 234 432 765 432 318 287 190 223 210 218 220 431 

There is however one problem. Once the table have been attached – the names 

of all variables are directly available but we can easily overwrite them by creating a 

new object with the same name. In such a case it is easy to forget that we’ve attached 

an object – and use the name as if it was from the data-frame. However now it refers 

to something entirely different, which may introduce serious bias in our analyses. The 

reason for that is the location of the attached table in the hierarchy of the namespace. 

All newly created objects are placed in the global environment and by default they 

have higher priority over subsequent sections of the namespace. We can actually see 

this hierarchy after calling the search() function: 
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> search() 

 [1] ".GlobalEnv"        "silk.production"   "package:sudoku"    

 [4] "package:stats"     "package:graphics"  "package:grDevices" 

 [7] "package:utils"     "package:datasets"  "package:methods"   

[10] "Autoloads"         "package:base"      

> prev.p <- 'Iam not correct!' 

> prev.p #newly created object replaced the one from the table 

[1] "Iam not correct!" 

 

Fear not! The data in the data frame remain intact. The only thing that 

changed is that there’s one more object called prev.p (you can check this by calling 

silk.production$prev.p). 

Of course we can remove attached objects from the namespace using the 

detach() function. It removes all variable names from current namespace and once 

again we must provide full names with $ to call variables. Fortunately for those that 

prefer safety over convenience – there’s one more solution. By using the with() 

function we can both call variables using their names (without the name of the table) 

and avoid any problems. This is because with() doesn’t attach the object 

permanently, just allows for temporal in-line use of simple variable names. The choice 

is yours – but be aware of dangers. 

> with(silk.production, prev.p) 

[1] 100 340 546 234 432 765 432 318 287 190 223 210 218 220 431 

 

Data input 

The last but maybe most important section on data was skipped until now. You 

probably wondered how to enter your own data to R. the simplest way of doing that is 

using the scan() function, which reads numbers (data) from the standard computer 

input (the keyboard). Leaving the last position empty ends the data chain and results 

in the formation of the data vector: 

> scan() 

1: 3 

2: 4 

3: 5 

4: 6 

5:  

Read 4 items 

[1] 3 4 5 6 

 

Most commonly we store our research data in electronic spread-sheets such 

as Excel. We can load them into R in several ways. First – make sure your dataset 

meets several requirements of the R environment, most importantly variable names 

are single words or multiple words joined by dots or underlines (they cannot contain 
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white spaces). Excel file should be saved as the Unicode text file with columns 

separated by tabulators or as a csv file. To read such file into R we use the 

read.table() function if our numbers have dot-separated decimals or 

read.delim2() if numbers have comma-separated decimals. By specifying head=T 

we indicate that the first row contains variable names. The sep argument specifies 

the character that separates columns (if that should be the tabulator “\tab” it can be 

omitted; if this is comma – use sep=”,” or employ alternative reading function – 

read.csv(); note that in csv files by default decimals must be separated by dots). 

> mydata <- read.table(file="cisnienie.txt", head=T, sep="\t") 

 

Upon reading to R – all text values are automatically converted to factors. In case we 

wanted them imported as text values we could add the as.is=T argument. 

Similarly, we can write the data-frame to disc: 

> write.table(silk.production, file="silk.dat", sep="\t") 

 

Manipulating tables 

Tabular datasets are preferred in R and it provides several specific functions designed 

for handling and summarizing data in tabular form. At first these functions may seem 

complicated and hard to predict, but once you have started using R on a regular basis 

they prove to be very useful. 

The tapply() function applies specified procedure to a vector (or column) 

of data according to some grouping variables. E.g. let’s calculate mean current 

production of silk by individuals of different sex: 

> with(silk.production, tapply(curr.p,sex,mean)) 

       1        2  

37.62500 47.57143 

 

The result of this function is a table structured according to used grouping 

variables. If there are two grouping variables – the output table becomes more 

complex: 

> with(silk.production, tapply(curr.p,list(sex,humid),mean)) 

  56 76 78 79 87 88 89   90 100 

1 NA 23 18 56 22 54 76   NA  34 

2 43 NA NA NA NA 67 NA 44.5  45 
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In case of matrices the specified function can be applied to either columns or 

rows. Rows form the margin number 1, columns are margin number 2. Here we 

calculate standard deviation column-wise: 

> mymat <- matrix(silk.production$curr.p,c(3,5)) 

> mymat 

     [,1] [,2] [,3] [,4] [,5] 

[1,]   34   76   56   32   23 

[2,]   45   54   98   22   43 

[3,]   38   28   67   10    8 

> apply(mymat,2,sd) 

[1]  5.567764 24.027762 21.779195 11.015141 17.559423 

 

Then we subtract obtained SD values column-wise from the values of the original 

matrix: 

> sds <- apply(mymat,2,sd) 

> sweep(mymat,2,sds) 

         [,1]      [,2]     [,3]      [,4]      [,5] 

[1,] 28.43224 51.972238 34.22081 20.984859  5.440577 

[2,] 39.43224 29.972238 76.22081 10.984859 25.440577 

[3,] 32.43224  3.972238 45.22081 -1.015141 -9.559423 

 

Similar function for vectors is called sapply(vector, FUN) – it applies the 

FUNction to each element of the vector and returns a list. 
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Part 3 ~ Graphics and plotting 

Graphical devices 

As anything else in R – graphics may be more complicated than it should. 

Unfortunately there’s no way around – we’ll have to go through the basics first and 

learn some of the most non-intuitive ways of dealing with graphics. 

To start with – let’s generate a sample data set. The syntax of the following 

will be a mystery for you (at least until our next meeting) but just assume you’re 

generating linearly correlated data with two variables, y being normally distributed: 

> x <- runif(20, min=1, max=10) 

> y <- x + rnorm(20, mean=0, sd=1) 

> plot(x,y) 

Waiting to confirm page change... 

> abline(lm(y~x)) 

 

 
Fig 1: Sample graph 

What happened is that we used the function plot to generate the general plot 

and then used the function abline to add the line to it. It’s important to remember, 

that abline can do its job only when the plot it could draw onto already exists. If not 

– you’ll get an error message. That brings us to the concept of the graphic device in R 

(Davey, 2009; see also Crawley, 2010). Graphic device is anything that takes your data 

and prints it in the graphical format. By default, when calling any plotting function in 
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R, it opens a standard output device – which is simply your screen (that’s this window 

popping up when you call plot). There are other possible devices – some of them allow 

for writing the graphics to the file so you can save the plot. In windows it’s a little bit 

simpler – having focus on the device window just choose File > Save as > [File format] 

and you’ll be able to save your plot on the hard drive. Below there’s a list of the most 

common graphic devices; they’re also names of the functions used for handling them: 

 
Table 1: Graphic devices 

windows() Open MS Windows window 

quartz() Works in MacOS 

x11() UNIX display 

pdf() PDF file (multipage) 

postscript() Postscript file (multipage) 

png() PNG file (one page) 

jpeg() JPG file (one page) 

tiff() TIFF file (one page) 

  

Please notice that some devices allow multiple pages – plotting new graphs 

will just add the pages to the existing files. Other devices allow just one page and any 

next page added to the graph will destroy previous content. You can see the list of 

available devices using dev.list(). By using dev.curr() you’ll get the name of the 

currently working device. You can open a device by using functions from above table 

and close it by using dev.off(). Finally you can close all open devices by using 

graphics.off(). Let’s plot our graph to a PDF file: 

> pdf("plik.pdf") 

> plot(x,y) 

> abline(lm(y~x)) 

> dev.off() 

windows  

      2 
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In R you can choose the graphing functions from three different packages. The 

oldest one is graphics, which is automatically loaded when R starts. Inside it you can 

find so called high-level functions for creating graphs of different types – and low-level 

functions for adding different things to your graphs. But more advanced packages are 

available that produce more professional-looking and more aesthetical graphs – and 

these are ggplot2 and lattice. We’ll look shortly on the standard graphing 

functions and then introduce these more advanced packages. Please note that 

ggplot2 and lattice are not available by default and you’ll have to install them 

manually. 

 
Table 2: High-level plotting functions 

Function Plot type 

assocplot Association plot 

barplot Bar-plot 

boxplot Box-plot 

bxp Box-plot from summaries 

cdplot Conditional density plot 

contour Contour (map-like) plot 

coplot Conditioning plot 

curve Draw mathematical curve 

dotchart Cleveland Dot plot 

filled.contour Level plot 

fourfoldplot Fourfold plot 

hist Histogram 

image Digital image 

matplot Plot from columns of a matrix 

mosaicplot Mosaic plot 

persp 3D plot 

pairs Scatterplot matrix 

pie Pie chart 

plot x-y plot 

spineplot spineplot and spinograms 
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stars star (spider/radar) plot 

stem stem-and-leaf plot 

Working with standard graphics 

In the graphics package the way of working is always the same: you create a graph 

using a high-level function and the you adjust the graph using low-level functions. 

Below you’ll find most widely used high-level functions with brief descriptions of 

what they do: 

Many of these functions take additional arguments for early customization of 

the plots – look up their help pages for more details. To play with them – let’s use 

some example data set called pressure. It contains data on temperature and pressure 

in a data-frame: 

 
> plot(pressure) 

Waiting to confirm page change... 

> plot(pressure$temperature, pressure$pressure) 

Waiting to confirm page change... 

> plot(pressure~temperature, data = pressure) 

Waiting to confirm page change... 
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Fig 2: Sample plot 

 As you can see – all three plots are similar – they just differ in the way the 

data – and their labels – are assigned to the axes. Actually the third method is the best 

– it’s the most self-explanatory and gives the best axis labels. Other functions use more 

arguments at the start. E.g. let’s generate a histogram of 200 normally distributed 

random numbers: 

 
> hist(rnorm(200)) 

Waiting to confirm page change... 
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Fig 3: Sample histogram of gaussian data 

We might as well adjust shape and position of bars on our graph. Let’s create two 

additional ones (by using par() which will be explained a bit later). They show two 

kinds of adjustments we may do to the histogram: 

> par(mfrow = c(2,1), mex = 0.6) 

> hist(rnorm(200), breaks = 20) 

Waiting to confirm page change... 

> hist(rnorm(200), breaks = c(-4, -3, -1, -0.5, 0, 0.25, 0.5,  

+ 0.6, 1, 2, 4)) 
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Fig 4: Sample layouts of histograms 

Standard X-Y plotting function also allows for some minor adjustments: 

> y <- rnorm(20) 

> par(mfrow = c(2,2), mex = 0.6) 

> plot(y, type="l") 

Waiting to confirm page change... 

> plot(y, type="p") 

> plot(y, type="b") 

> plot(y, type="h") 
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Fig 5: Different types of plots 

As you can see – using standard high-level functions is quite straightforward 

but confusing, especially at the beginning. Problem is that the names of arguments are 

often quite mysterious and they don’t explain themselves so you’ll have to remember 

a lot of them. And that’s not over! 

 

Low-level functions 

Low-level functions allow for adding elements to existing graphs. Below you’ll find the 

list of common low-level functions and what they do (Table 3): 
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Let’s try to add some elements to our previous graph: we’ll add the box 

around the graph, some text, an arrow and a legend: 

x <- runif(20, min = 1, max = 10) 

> y <- x + rnorm(20, mean = 0, sd = 1) 

> plot(x, y, pch = 2, main = "Plot of x and y to show low-level  

+ functions") 

Waiting to confirm page change... 

 

> lmfit <- lm(y ~ x) 

> abline(lmfit) 

> box(col = "grey") 

> arrows(5, 8, 7, predict(lmfit, data.frame(x = 7))) 

> text(5, 8, "Line of best fit", pos = 2) 

> legend(7.5, 3, c("x on y"), pch = 2) 

 
Fig 6: Additional elements as low-level functions 
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Table 3: Low-level functions 

Function Action 

abline Add straight lines to the plot 

arrows Add arrows 

axis Add axes to the plot 

box Draw box around a plot 

grid Add grid 

legend Add legends 

lines Add connected line segments 

mtext Write text into the margins of the plot 

panel.smooth Simple panel plot 

points Add points 

polygon Draw polygon 

rect Draw rectangles 

rug Add rug to the plot 

segments Add line segments 

symbols Draw symbols 

text Add text 

title Plot annotation 

 

Graphical states and parameters 

So far we’ve used several different parameters (such as line style) inside the graphing 

function. When called like this they’re applied only to this particular call and don’t 

affect other plots. But we can set these parameters manually to work in the whole R 

workspace and thus – change default values of these attributes in other R functions. 

To do this – we should use the par() function. Everything specified there will change 

the state of a variable – but you can still override this by specifying your own value in 

a graphing function call. You can  see different types of state variables in the attached 

table. Some of them are callable from the par() or in any other graphing function, 

some can be set only by par(). Finally – some are read-only and cannot be set by the 

user. It will become more apparent during the class. It is a good practise to save 

starting values of these parameters to an object (e.g. parameters<-par()) in order to 

be able to restore them if needed (par(parameters)). 
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Positioning plots 

You’ve seen the use of par() to set multiple plots on one page. By using mfrow and 

mex arguments we were able to set the grid of several plots and specify the space 

between them. Here, we’ll do the same for four diagnostic plots from a simple linear 

regression: 

> par(mfrow = c(2,2), mex = 0.6) 

> plot(lm(y ~ x)) 

Waiting to confirm page change... 

 
Fig 7: Subdivided plot space 

We might also want to adjust the relative heights and widths on our graph. Here we 

should use layout-manipulating function: 

> layout(cbind(c(4, 2), c(0,0), c(3,1)), heights = c(2,1), 

+ widths = c(2, lcm(2), 1)) 

> par(mex=0.6) 

> plot(lm(y ~ x)) 

Waiting to confirm page change... 
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Fig 8: Manipulated layout 

On the picture at the end (below the Short Guide to the Most Essential 

Functions) you’ll find an illustration of additional positioning parameters that may 

influence the layout of your graphs. 

 

GGPLOTS 

Do you have the impression that these plotting functions are a little bit to slow and 

tedious? If yes – you’re correct. Standard graphing package of R is old and uses just 

about 10% of modern computers calculating power. What if we want to have 

professional, publication-quality plots? I suggest using ggplot2 and lattice. Let’s have a 

brief overview. We’ll use some of the example data available with these packages. 



54 
 

 First – let’s make simple plot for the relationship of body size and brain 

weight for 83 mammal species: 

> library(ggplot2) 

> attach(msleep) 

> plot(bodywt, brainwt, log = "xy") 

Waiting to confirm page change... 

> abline(lm(log10(brainwt) ~ log10(bodywt))) 

 
Fig 9: Body weights and brain weights of mammals using graphic package 

Now let’s try the ggplot2 version (the function is called qplot and mimics the standard 

plot function): 

> print(qplot(bodywt, brainwt, log = "xy")) 
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Fig 10: Body and brain weights using qplot 

I hope you to think this plot is better and more aesthetical than the previous 

one. We could also want to add the regression line to our graph. Since elements of the 

graph in this package are so called geoms – we add another geom specifying that we 

want a regression line: 

> print(qplot(bodywt, brainwt, log = "xy", 

+ geom = c("point", "smooth"), span = 1)) 
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Fig 11: Adding regression line as a smoother 

We can also play with the “span” parameter – it regulates the smoothness of the line – 

or the degree it tries to fit the data correctly. 

 The data in our dataset are grouped according to the type of food each species 

takes. We could incorporate this in our traditional plot: 

> plot(bodywt, brainwt, log = "xy", pch = as.numeric(vore)) 

Waiting to confirm page change... 

> legend(0.1, 4.4, c("carni", "herbi", "insecti", "omni", "NA"), 

+ pch = 1:5) 
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Fig 12: Simple plot with different symbols 

Neat? But look at the output of ggplot2: 

> print(qplot(bodywt, brainwt, log = "xy", shape = vore)) 

 
Fig 13: qplot with different symbols 
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We could also group them by colour: 
> print(qplot(bodywt, brainwt, log = "xy", shape = vore)) 

 
Fig 14: qplot with coloring (see PDF version) 

I hope I encouraged you to explore the ggplot2 package. Lattice mentioned 

earlier is similar – it also produces complex plots of publication-quality, but has 

superb advantage of plotting complex multivariate plots for random-variable 

analyses. Feel free to explore their manuals – both are real treasuries of fresh and 

modern graph types! 
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Part 4 ~ Hypothesis testing. Simple tests 

Distributions 

R uses a set of predefined distributions and also provides several functions for 

obtaining different pieces of information from them. There are four types of 

distribution-related functions – beginning with the letters r, d, ,p and q. They return – 

respectively: pseudo-random observation from a specified distribution; probability 

density function (point value) for a given value; cumulative probability for a given 

value (i.e. p of getting value smaller than specified); value from a distribution given 

specified cumulative probability (i.e. quantile for a given P). E.g. for normal 

distribution: 

> y <- rnorm(50, mean = 30, sd = 10) 

 

> y 

 [1] 18.38744 35.70038 22.02886 26.38781 35.08229 21.40059 22.39499 

 [8] 56.68030 34.22761 21.95484 14.69376 38.31176 13.21152 44.17276 

[15] 41.42520 35.73230 37.05871 32.00607 60.06589 33.17033 44.65350 

[22] 35.79607 26.31287 17.77483 50.62435 40.11203 36.65872 32.58801 

[29] 15.16906 13.63348 40.38250 39.48611 46.92860  5.16183 49.33278 

[36] 21.83284 33.02274 22.92437 31.50554 30.56412 30.33825 33.05177 

[43] 20.17136 40.76705 30.61425 31.85321 22.95693 32.19884 38.83665 

[50] 15.75178 

 

> dnorm(30, mean = 30, sd = 10) 

[1] 0.03989423 

> pnorm(30, mean = 30, sd = 10) 

[1] 0.5 

> qnorm(0.025, mean = 30, sd = 10) 

[1] 10.40036 

Importantly, these values are much more useful than those drawn from 

statistical tables – as scientists did before the era of modern computers. They’re 

calculated from a scratch – allowing for precise calculation of errors and other 

probability-related values in statistics. Other distributions included in R (used in 

exactly the same way – by prefixing them with an appropriate letter (p, q, d, r)) are 

presented in Table 4 (adapted from Davey, 2009). 

Most of them can be used without any arguments (they take default 

arguments in such a case) – but look up their help pages to see specific modes of use 

and detailed information about possible arguments. 
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Table 4: Distributions available in basic distribution of R 

Name Function Name Function 

Beta beta Multinomial multinom 

Binomial binom Negative binomial nbinom 

Cauchy cauchy Normal norm 

Chi-Squared chisq Poisson pois 

Exponential exp Student t t 

F f Studentised range tukey 

Gamma gamma Uniform unif 

Geometric geom Weibull weibull 

Hypergeometric hyper Wilcoxon Rank Sum wilcox 

Logistic logis Wilcoxon Sign Rank signrank 

Lognormal lnorm   

 

Data diagnostics 

Before doing any tests it’s a good practice to explore our data and look for possible 

violations of mostly accepted assumptions that should be met in popular tests. 

Checking your data is simple and in most cases requires some diagnostic plots – but 

beginning with simple summary is always the best way: 

> summary(leaf$y) 

   Min. 1st Qu.  Median    Mean 3rd Qu.    Max.  

  1.904   2.241   2.414   2.419   2.568   2.984 

> leaf <- read.table(file="leaf.txt", head=T) 

> par(mfrow=c(2,2)) 

> plot(leaf$y) 

> boxplot(leaf$y) 

> hist(leaf$y,main="") 

> plot(c(leaf$y,30)) 
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Fig 15: Graphs for data exploration 

 One quick look on the graphs should be enough to spot possible outliers and 

deviations form general variation. Outliers can be also spotted with ordinary boxplot: 

> boxplot(c(leaf$y,4,3,3.5,3.49,3.41), outline=T) 

 
Fig 16: Checking for outliers 
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Fig 17: Checking for normality 

Another important assumption that has to be met in parametric tests is a 

normality assumption. It can be easily tested with a quantile - quantile plot, that plots 

ranked quantiles from our sample against quantiles from the normal distribution. Any 

severe deviations form a x = y line indicate departures from normality. As you can see 

(Fig. 17) – in our data this is not an issue (it’s also evident from near equality of 

median and mean): 

> qqnorm(leaf$y) 

> qqline(leaf$y,lty=2) 

 

Of course, we could use some more formal way of testing normality – e.g. with 

a Shapiro-Wilk test: 

> shapiro.test(rpois(n=30,lambda=0.1)) 

 

        Shapiro-Wilk normality test 

 

data:  rpois(n = 30, lambda = 0.1)  

W = 0.2754, p-value = 4.402e-11 
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> shapiro.test(exp(rnorm(100))) 

 

        Shapiro-Wilk normality test 

 

data:  exp(rnorm(100))  

W = 0.5563, p-value = 6.854e-16 

 

In the second case we have used an obviously non-normal distribution (lognormal) 

and got a significant result, indicating significant deviation from normality. This is the 

usual way of using statistical tests in R – after providing something like name.test 

you enter any arguments necessary and put in you data. The result is usually some 

form of summary table with statistics values, P values and additional information. It is 

important to note that any hypothesis test produces a new kind of R object of class 

htest. These objects provide several attributes allowing to access some particular 

“parts” and values in our test object: 

> sometest <- shapiro.test(exp(rnorm(100))) 

> sometest 

 

        Shapiro-Wilk normality test 

 

data:  exp(rnorm(100))  

W = 0.6932, p-value = 3.762e-13 

 

> attributes(sometest) 

$names 

[1] "statistic" "p.value"   "method"    "data.name" 

 

$class 

[1] "htest" 

 

As any other object – you can assign the result of your test to a variable for further 

manipulation or to simply store it’s result in one place. 

 

Some popular tests 

R is a real treasury of statistical tests – just have a look at the Table 5 (adapted from 

Crawley, 2010): 

As always it’s good to look through the help pages for these tests to look for 

specific uses and lists of available arguments. As examples of handling test objects and 

extracting information from them – we’ll deal with some of the most popular test 

statistics. 
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If our attempt is to check the difference between two means our first guess 

would be a Student’s t-Test. Let’s check if the growth rate of daphnias in two different 

rivers differ significantly: 

> daphnia <- read.table(file="daphnia.txt", sep="\t", head=T) 

> with(daphnia, t.test(Growth.rate~Water)) 

 

        Welch Two Sample t-test 

 

data:  Growth.rate by Water  

t = -1.0984, df = 63.189, p-value = 0.2762 

alternative hypothesis: true difference in means is not equal to 0  

95 percent confidence interval: 

 -0.9362193  0.2720467  

sample estimates: 

mean in group Tyne mean in group Wear  

          3.685862           4.017948 

 

 

 Table 5: Tests available in the basic distribution of R 

Name Function Name Function 

Ansari-Bradley test ansari.test 

Cochran-Mantel- 

Haenszel Chi-Sq 
test 

mantelhaen.test 

Bartlett for 

homogeneity of V 
bartlett.test 

Mauchly’s test of 

sphericity 
mauchly.test 

Exact binomial test binom.test Oneway ANOVA oneway.test 

Box-Pierce test box.test 
Test for trend in 
proportions 

prop.trend.test 

Chi-squared test chisq.test Quade test quade.test 

Correlation test cor.test Shapiro-Wilk test Shapiro.test 

Fisher exact fisher.test Student’s t-Test t.test 

Fligner-Killeen for 

homogeneity of V 
fligner.test 

F test for 
comparing 
variances 

var.test 

Friedman Rank sum 

test 
friedman.test 

Wilcoxon Rank 
Sum and Signed 
Ranks t. 

Wilcox.test 

Kruskal-Wallis 
Rank Sum test 

kruskal.test AND OTHERS…  

Kolmogorov-
Smirnov test 

ks.test   
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It appears they don’t differ. Displaying attributes of the object created after 

using t-test shows some useful values we could extract in our future analyses: 

> daph <- with(daphnia, t.test(Growth.rate~Water)) 

> attributes(daph) 

$names 

[1] "statistic"   "parameter"   "p.value"     "conf.int"    

[5] "estimate"    "null.value"  "alternative" "method"      

[9] "data.name"   

 

$class 

[1] "htest" 

 

Importantly – our data could be aligned in two different ways. Daphnias’ data 

were entered in a way every statistician would do this, but we could as well enter 

single-variable measures column-wisely and thus creating several columns of the 

same response. E.g.: 

> beetles <- read.table(file="beetle.txt", head=T, sep="\t") 

> beetles 

   beetleX beetleZ 

1        3       5 

2        4       5 

3        4       6 

4        3       7 

5        2       4 

6        3       4 

7        1       3 

8        3       5 

9        5       6 

10       2       5 

> with(beetles, t.test(beetleX, beetleZ)) 

 

        Welch Two Sample t-test 

 

data:  beetleX and beetleZ  

t = -3.873, df = 18, p-value = 0.001115 

alternative hypothesis: true difference in means is not equal to 0  

95 percent confidence interval: 

 -3.0849115 -0.9150885  

sample estimates: 

mean of x mean of y  

        3         5 

 

> parasites <- c(beetles$beetleX, beetles$beetleZ) 

> label <- factor(c(rep("X",10),rep("Z",10))) 

> plot(parasites~label,notch=T,xlab="Beetle",ylab="Parasites") 
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Fig 18: Box-notch graph for beetles example 

Here we’ve tested if the amount of parasites in a beetle differed between two 

treatments subjecting the insects to different kinds of meds (X and Z). Both the test 

and the notch-plot indicate that there’s a significant difference between the levels of 

parasite abundance. Here, the test was specified using the treatment groups and not 

the formula-like expression. 

Since our data are counts of parasites we might want to use a non-parametric 

alternative of the Student’s t-test: 

 

> with(beetles, wilcox.test(beetleX, beetleZ)) 

 

        Wilcoxon rank sum test with continuity correction 

 

data:  beetleX and beetleZ  

W = 11, p-value = 0.002988 

alternative hypothesis: true location shift is not equal to 0  

 

Warning message: 

In wilcox.test.default(beetleX, beetleZ) : 

  cannot compute exact p-value with ties 
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Here we’ve also found a significant difference – although the test is less powerful. 

Additionally, we have a warning message that our P value is rather an approximation 

than a strict value (due to ties found in ranked values of our observations). 

When doing most of the tests we often would like to determine the nature of 

our test (one- or two-tailed) and specify if our data constitute two independent 

samples or paired measures. Let’s try a clinical trial example – the following data 

show the response of the GABA level to some kind of psychotherapy, measured on the 

same individual pre- and post-therapy. Is there any difference between these levels – 

specifically, is there any increase in these values, as predicted by theory? 

> with(gaba, t.test(before, after)) 

 

        Welch Two Sample t-test 

 

data:  before and after  

t = -0.4088, df = 29.755, p-value = 0.6856 

alternative hypothesis: true difference in means is not equal to 0  

95 percent confidence interval: 

 -5.248256  3.498256  

sample estimates: 

mean of x mean of y  

   12.500    13.375  

 

> with(gaba, t.test(before, after, paired=T,alternative="less")) 

 

        Paired t-test 

 

data:  before and after  

t = -3.0502, df = 15, p-value = 0.00405 

alternative hypothesis: true difference in means is less than 0  

95 percent confidence interval: 

       -Inf -0.3721108  

sample estimates: 

mean of the differences  

                 -0.875 

 

Clearly – when an appropriate (and justified!) type of test is used – the differences are 

apparent. Here, again you should notice that we’re more like experimenting with R 

than learning pure statistics. We should always check our assumptions before 

performing any test. For the t-test we could check if the variances are equal: 

> var.test(gaba$before, gaba$after) 

 

        F test to compare two variances 

 

data:  gaba$before and gaba$after  

F = 0.8337, num df = 15, denom df = 15, p-value = 0.7292 

alternative hypothesis: true ratio of variances is not equal to 1  

95 percent confidence interval: 
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 0.2912836 2.3860713  

sample estimates: 

ratio of variances  

         0.8336807 

 

But perhaps the most important “statistic” we could run is: 

> length(gaba$before) 

[1] 16 

In other words, if we don’t have enough data – we should be extremely cautious in our 

inferences. How to know how much data is required? 

 

Power calculation 

Power analysis in R is easy. There are 3 main functions for doing this, matched with 3 

most important statistical techniques you might use: power.t.test, 

power.prop.test and power.anova.test. In any of these functions you provide 

several parameters and get the result telling you how you should plan your 

experiment in order to be able to detect an effect of desired strength. Arguments you 

provide to these functions are: n - the number of observations per group, delta – the 

difference in means you’d like to detect, sd – SD of the sample, sig.level – default is 

5%, power – inverse of the II-type error, default is 80%, type of the test (independent 

samples or paired), alternative (one-tailed, two-tailed). You should leave one of 

these as NULL – this will become your result. E.g. if the mean of your response is 

around 20 and you’d like to detect the difference of 10% (i.e. delta = 2) you could call: 

> power.t.test(delta=2, sd=3.5, power=0.8) 

 

     Two-sample t test power calculation  

 

              n = 49.05349 

          delta = 2 

             sd = 3.5 

      sig.level = 0.05 

          power = 0.8 

    alternative = two.sided 

 NOTE: n is number in *each* group 

 

All other parameters are left default (it’s for a two-sample two-tailed test). It indicates 

that for detecting an effect of this magnitude you’d need at least 50 replicates in each 

group. Check what you’d be able to examine if you could afford a sample of only 60 

objects (30 a group). 
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Bootstrapping 

Sometimes you’re unable to run classical tests – e.g. distributions look odd. Recall the 

classical experiment of Michelson (1880) with measuring the speed of light. We’ll use 

his data (as departures from the value of 299000, to make the numbers shorter) and 

check if this speed is different from 299990 – a value widely accepted in XIX c. 

> light <- read.table(file="light.txt", sep="\t", head=T) 

> summary(light) 

     speed      

 Min.   : 650   

 1st Qu.: 850   

 Median : 940   

 Mean   : 909   

 3rd Qu.: 980   

 Max.   :1070 

 

As you can see – the mean is very different from median, suggesting strong skewness 

in our data. It’s also apparent from some diagnostic plots: 

 
Fig 19: Diagnostic plots for speed-of-light data 



70 
 

Classical tests would probably give biased results. We could use some non-

parametric tests, e.g.: 

> wilcox.test(light$speed, mu=990) 

 

        Wilcoxon signed rank test with continuity correction 

 

data:  light$speed  

V = 22.5, p-value = 0.00213 

alternative hypothesis: true location is not equal to 990  

 

Warning message: 

In wilcox.test.default(light$speed, mu = 990) : 

  cannot compute exact p-value with ties 

 

But we could use randomization as well – here most probably in the form of 

bootstrapping. Basically, we have to sample our observations to obtain new samples 

and based on these samples – we generate the distribution of our sample statistics (in 

this case – the mean). Since our sample mean is 909 – the distribution based on the 

null hypothesis will have such mean. Then we should ask – how likely it is to obtain 

from this distribution the value of 990 (the value we’re testing our sample against). If 

this probability will be low enough (to say – lower than 5%) we’ll reject the 

hypothesis that our sample comes from the population with the mean of 990. More 

specifically – based on this simulated distribution we should be able to specify the 

confidence interval for our mean. 

> a <- numeric(10000) # here we’ll store our simulated means (10000) 

> for (i in 1:10000) { #we iterate 10000 times... 

+    

+   a[i] <- mean(sample(light$speed, replace=T))  

# ...every time calculating the mean 

+  

+ } 

> par(mfrow=c(1,1)) 

> hist(a, main="")  

> quantile(a, c(0.025,0.975)) 

    2.5%    97.5%  

863.0000 950.5125 

 



71 

 
Fig 20: Histogram from bootstrapping 

Alternatively we could use an external library boot to the same. Here it’s 

sometimes tricky to specify the statistic’s function used for resampling, but once we’ve 

done that – the rest is simple: 

> library(boot) 

> mymean <- function(val,i) mean(val[i]) 

> myboot<-boot(light$speed,mymean,10000) 

> myboot 

 

ORDINARY NONPARAMETRIC BOOTSTRAP 

 

 

Call: 

boot(data = light$speed, statistic = mymean, R = 10000) 

 

 

Bootstrap Statistics : 

    original  bias    std. error 

t1*      909 -0.0853    23.03312 

 

> boot.ci(myboot) 

BOOTSTRAP CONFIDENCE INTERVAL CALCULATIONS 
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Based on 10000 bootstrap replicates 

 

CALL :  

boot.ci(boot.out = myboot) 

 

Intervals :  

Level      Normal              Basic          

95%   (863.9, 954.2 )   (866.0, 956.0 )   

 

Level     Percentile            BCa           

95%   (862.0, 952.0 )   (856.0, 948.5 )   

Calculations and Intervals on Original Scale 

Warning message: 

In boot.ci(myboot) : bootstrap variances needed for studentized intervals 
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Part 5 ~ Statistical modeling 

The outline 

Statistical modeling constitutes the essence of contemporary statistical analysis. It 

stems from one simple idea: try to fit some arbitrary relationship to your data and 

then estimate the goodness of fit with respect to all parameters included. Several 

functions allow you to fit statistical models to your data –depending on the form of 

your model, types of your variables and whether they contain fixed or random effects.  

In general the model is defined using so called formula: it’s always of the same 

form: response~dependent_variable1+dpenedent_variable2+etc. Operators in 

formulae work in the following way: + means include a variable; - means exclude a 

variable; : forms an interaction between explanatory variables; * includes both 

single variables and their (all possible) interactions; / means nesting; | conditions 

(response as a function of a variable given the condition). Below you’ll find formulae 

for most popular types of models (adapted and modified after Crawley, 2010). 

As you can see, assigning the formula to a particular type of model is rather 

arbitrary – all these are just different types of additive (linear) models. Functions that 

deal with LMs are listed in Table 7 below – your choice will depend on the type of 

variables in your model (random/fixed) and the distribution your data follow 

(adapted and modified after Crawley, 2010). 

 
Table 6: Formula syntax 

Formula Model type 

y ~ 1  Null model  

y ~ x  Linear regression – x is continuous  

y ~ factor  One-way ANOVA – factor is a categorical variable  

y ~ factor1 + factor2  Two-way ANOVA without interaction  

y ~ A*B*C  Factorial ANOVA with all possible interactions  

y ~ A*B*C – A:B:C  3-wayANOVA without the 3rd-order interaction  

y ~ a/b/c  
Factor a nested in b which is nested in c (rarely used 
in GLMM)  

y ~ factor + x  ANCOVA – common slope but two intercepts  

y ~ factor*x  ANCOVA – two slopes and two intercepts  
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y ~ x + z  Multiple regression  

y ~ x + z  multiple regression with interaction  
Table 7: Modeling functions in R 

Function Package Description 

lm  stats  Linear model – simple regression  

aov  stats  ANOVA and ANCOVA  

anova  stats  

Compares two model objects (most often with different fixed-
effects structures) and compares their goodness of fit (residual sum 
of squares)  

glm  stats  Generalised Linear Model (non-gaussian data)  

nls  stats  Nonlinear least squares  

loess  stats  Local polynomial regression (form of smoothing)  

gam  gam  Generalized additive model  

lme  nlme*  Linear mixed effects model (only gaussian data)  

nlme  nlme*  Nonlinear mixed effect model  

lmer  lme4*  
Linear, generalized linear and nonlinear models (GLMM) using 
restricted maximum likelihood (REML)  

MCMCglmm  MCMCglmm*  
GLMM using Bayesian statistics (Markov Chains); allows also for 
fitting random regression models and meta-analyses  

glmmPQL  MASS*  GLMM using penalized quasi-likelihood  

 

It’s important to note once again that in fact majority of the above functions 

would give the same results, at least for similar types of analyses (e.g. for Gaussian 

data with categorical explanatory variables each of the following – lm, glm, anova – 

would yield the same conclusions, either qualitatively and quantitatively; everything 

else being equal – both LM and ANOVA are just different kinds of linear models and 

differ in the way the design matrix for fixed effects is defined). However, it’s always 

reasonable to choose the most suitable function, both for speeding up our analyses 

and for obtaining the most suitable and appropriate type of output. 

 

Simple linear models 

To illustrate the way statistical modeling works in R let’s try to fit simple linear 

regression to some data. The data below are for the association between mortality 
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(continuous Gaussian response) and smoking (continuous explanatory variable) – i.e. 

the best alternative from the above will be lm():  

 
> smoke <- read.table(file="smoke.txt", sep="\t", head = T, skip = 1) 

> smoke.lm <- with(smoke, lm(Mortality~Smoking)) 

> summary(smoke.lm) 

 

Call: 

lm(formula = Mortality ~ Smoking) 

 

Residuals: 

    Min      1Q  Median      3Q     Max  

-30.107 -17.892   3.145  14.132  31.732  

 

Coefficients: 

            Estimate Std. Error t value Pr(>|t|)     

(Intercept)  -2.8853    23.0337  -0.125    0.901     

Smoking       1.0875     0.2209   4.922 5.66e-05 *** 

--- 

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1  

 

Residual standard error: 18.62 on 23 degrees of freedom 

Multiple R-squared: 0.513,      Adjusted R-squared: 0.4918  

F-statistic: 24.23 on 1 and 23 DF,  p-value: 5.658e-05 

 
> attributes(smoke.lm) 

$names 

 [1] "coefficients"  "residuals"     "effects"       "rank"          

 [5] "fitted.values" "assign"        "qr"            "df.residual"   

 [9] "xlevels"       "call"          "terms"         "model"         

 

$class 

[1] "lm" 

 

> predict(smoke.lm) 

        1         2         3         4         5         6         7  

 80.85467 146.10660 124.35596  99.34271 123.26842 108.04297 117.83076  

        8         9        10        11        12        13        14  

 98.25518  92.81752 108.04297  96.08012 110.21804 113.48063 118.91829  

       15        16        17        18        19        20        21  

120.00583 116.74323 133.05621 141.75647 122.18089 111.30557  91.72999  

       22        23        24        25  

 96.08012 105.86791  79.76713  68.89181 

 
> resid(smoke.lm) 

          1           2           3           4           5  

  3.1453349 -30.1066007  -1.3559555  28.6572865  31.7315768  

          6           7           8           9          10  

 -7.0429716   0.1692381  14.7448187  11.1824800 -20.0429716  

         11          12          13          14          15  

  7.9198832  18.7819639 -27.4806329 -22.9182942  23.9941735  

         16          17          18          19          20  

 22.2567703 -20.0562136   4.2435283   5.8191090   3.6944316  

         21          22          23          24          25  

-12.7299877 -11.0801168  14.1320929 -19.7671329 -17.8918103 
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Last three commands show the attributes of a lm object and also provide two 

functions we can use to access the values predicted by the model and the residuals. 

You could easily check that the residuals are actually true – of course, if you’re still 

having some doubts R is actually doing what you want it to do: 

> smoke$Mortality[4:6] - predict(smoke.lm)[4:6] 

        4         5         6  

28.657286 31.731577 -7.042972  

> resid(smoke.lm)[4:6] 

        4         5         6  

28.657286 31.731577 -7.042972 

 

One look at the graph is enough to see that in fact the relationship is strong 

and significant. Here we generate the x-y plot for the raw data, and then use predicted 

values for some specified x values (in the range between 60 and 140) to generate 

fitted line and confidence bands for the regression. matlines() adds these three lines 

to the plot: 

> with(smoke,plot(Mortality~Smoking,xlab="Smoking [months]", 

+ ylab="Mortality [year^-1]", las = 1)) 

> x2 <- seq(60,140,2) 

> y2 <- predict(smoke.lm, list(Smoking=x2),int="c") 

> matlines(x2,y2,lty=c(1,2,2),col=c("black","red","red")) 

> #adds confdence band 
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Fig 21: Simple plot with confidence band 

Sometimes, especially with complex models, you’d like to re-run the analysis 

without the need of specifying the model again. Fortunately, all functions making use 

of formulae (listed in the table above) allow for updating the formulae (which turns 

out to be useful when doing stepwise simplification of the model): 

> x <- runif(100, min=10, max=30) # independent variable 

> y <- x + rnorm(100, mean=25, sd=11) # correlated response 

> z <- runif(100, min=9, max=31) # 2nd independent, not correlated 

> model1 <- lm(y~x+z) 

> summary(model1) 

 

Call: 

lm(formula = y ~ x + z) 

 

Residuals: 

    Min      1Q  Median      3Q     Max  

-28.773  -9.299  -1.866   9.132  32.705  

 

Coefficients: 

            Estimate Std. Error t value Pr(>|t|)     

(Intercept) 29.48872    5.79090   5.092 1.74e-06 *** 

x            0.85799    0.21555   3.980 0.000133 *** 

z            0.01784    0.18239   0.098 0.922288     

--- 

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1  

 

Residual standard error: 11.75 on 97 degrees of freedom 

Multiple R-squared: 0.1405,     Adjusted R-squared: 0.1227  

F-statistic: 7.926 on 2 and 97 DF,  p-value: 0.0006483 
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> model2 <- update(model1, ~.-z) 

> summary(model2) 

 

Call: 

lm(formula = y ~ x) 

 

Residuals: 

    Min      1Q  Median      3Q     Max  

-28.743  -9.303  -1.785   9.120  32.592  

 

Coefficients: 

            Estimate Std. Error t value Pr(>|t|)     

(Intercept)  29.8598     4.3530    6.86 6.25e-10 *** 

x             0.8570     0.2142    4.00 0.000123 *** 

--- 

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1  

 

Residual standard error: 11.69 on 98 degrees of freedom 

Multiple R-squared: 0.1404,     Adjusted R-squared: 0.1316  

F-statistic:    16 on 1 and 98 DF,  p-value: 0.0001228 

 

Is the second model really better? Let’s check – we’ll employ the anova 
function, which (a bit counter-intuitively) does not run any kind of ANOVA (you have 
aov for that), but compares the goodness of fit of two models comparing their residual 
sums of squares: 

> anova(model1, model2) 

Analysis of Variance Table 

 

Model 1: y ~ x + z 

Model 2: y ~ x 

  Res.Df   RSS Df Sum of Sq      F Pr(>F) 

1     97 13388                            

2     98 13389 -1   -1.3203 0.0096 0.9223 

 

Both models provide similar fit – RSS is a bit lower for the first (more complex) model 
but the difference is not significant. Having no evidence for significant differences we 
should obviously choose simpler model.  

In fitting any linear model it’s important to check assumptions. Two are 
essential: normality of errors and homogeneity of variance. The easiest way of 
spotting any violations of assumptions is using diagnostic plots. 

> par(mfrow=c(2,2)) 

> plot(smoke.lm) 

> par(mfrow=c(1,1)) 
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Fig 22: Diagnostic plots for checking assumptions 

One quick look is enough to see that residuals are fairly normally distributed 

and our data only weakly deviate from the normal distribution (plots 1 and 2). We can 

see (plot 4) that point number 2 (116, 137) has a great influence on our fit (it lies close 

to the red dashed lines designating Cook’s influence statistics critical values). We 

might try removing this point and looking at the fit again to check if statistical 

significance is not the result of this one point influencing our analysis: 

 

> smoke.lm2 <- with(smoke, update(smoke.lm, subset=(Mortality!=116))) 

> summary(smoke.lm2) 

 

Call: 

lm(formula = Mortality ~ Smoking, subset = (Mortality != 116)) 

 

Residuals: 

     Min       1Q   Median       3Q      Max  

-29.7425 -11.6920  -0.4745  13.6141  28.7587  

 

Coefficients: 

            Estimate Std. Error t value Pr(>|t|)     

(Intercept) -20.0755    23.5798  -0.851    0.404     

Smoking       1.2693     0.2297   5.526 1.49e-05 *** 

--- 

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1  

 

Residual standard error: 17.62 on 22 degrees of freedom 

Multiple R-squared: 0.5813,     Adjusted R-squared: 0.5622  

F-statistic: 30.54 on 1 and 22 DF,  p-value: 1.488e-05 
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Finally, sometimes – especially in more complex GLM models, we might want to 

explore the degree of autocorrelation in the residuals of our model. We could use this 

using durbinWatsonTest from car library: 

> install.packages("car") 

> library(car) 

> durbinWatsonTest(smoke.lm) 

 lag Autocorrelation D-W Statistic p-value 

   1      0.01874995      1.921095   0.714 

 Alternative hypothesis: rho != 0 

> with(smoke,dataEllipse(Smoking, Mortality)) 

 

 
Fig 23: Elipses of normality 

Here – there’s no evidence for autocorrelation in the residuals (P>0.05). Additionally, 

we’ve applied the ‘ellipses’ function to visualise how good our data reflect a bivariate 

normal distribution (by default, the 50th and 90th percentiles of the normal 

distribution are plotted) (Fig 23). 

 

Going multiple – basic tools for models with more than one x 

Defining a multiple regression model is as straightforward as seen in case of simple 

regression. The only thing that arises may be the case of nonlinearity (it’s more likely 

we’d have to deal with it when the nr of explanatory variables increases) and the 
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decision as to which interactions of explanatory variables should we keep. Here we’ll 

see a very simple case of multiple regression, where the response (subjective taste of a 

cheese) is correlated with three variables objectively describing a cheese (lactic acid 

concentration, hydrosulphide content and acetic acid concentration). We begin with 

familiarizing ourselves with the data by plotting simple pairwise regressions for all 

possible pairs of variables: 

> ser <- read.table(file="ser.txt", head=T, sep="\t") 

> ser <- ser[,-1] 

> pairs(ser, panel=panel.smooth) 

 
Fig 24: Pair-wise plot of all variables 

It seems that taste is positively correlated with all three descriptors of cheese 

chemistry. Further – could we expect any curvilinear relationships? The pairwise plots 

are not definitive – it’s good to employ general additive models which don’t assume 
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anything about linearity of the relationship (in fact – the allow for non-linearity) and 

they employ non-parametric smoothing techniques to fit the most appropriate form of 

relationship: 

 
> library(mgcv) 

This is mgcv 1.6-2. For overview type 'help("mgcv-package")'. 

> par(mfrow=c(2,2)) 

> modelgam <- gam(taste~s(Acetic)+s(H2S)+s(Lactic), data=ser) 

> plot(modelgam) 

> par(mfrow=c(1,1)) 

 
Fig 25: Plots from GAM function 

All three plots (as you probably guessed – they show relationships together 

with confidence intervals) show no evidence for non-linearity – we can than omit all 

quadratic and higher order terms in our subsequent models. How should we deal with 

non-linearity once spotted? The easiest way is fitting higher order terms – i.e. 

quadratic, cubic and higher by using I() function (see below) or by forming 

polynomials (expressions approximating our relationship by using power series of an 

appropriate order; function poly()). The decision which to choose is rather formal – 

the results would be the same. Let’s look at this example; here you’ll generate simple 

data with curvilinear pattern (by imposing a quadratic function). As you can see, 
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simple linear regression yields poor fit. Adding one quadratic term of the explanatory 

variable makes the fit much better: 

> x <- runif(20,1,20) #explanatory variable 

> y <- x^2 + rnorm(20,5,15) #parabola-shaped response 

> plot(x,y, las=1) #las makes y labels horizontal 

> linear <- lm(y~x) #linear predictor 

> abline(linear, col="red", lty=2) #lty sets the dashed line 

> quadratic <- lm(y~x+I(x^2)) #parabolic predictor 

> range <- seq(1,20,1) #range for parabole x values 

> yp <- predict(quadratic, list(x=range)) #parabole y values 

> lines(range,yp,col="blue",lty=2) #adds parabole to the plot 

> anova(linear,quadratic) #compares two models using ANOVA 

Analysis of Variance Table 

 

Model 1: y ~ x 

Model 2: y ~ x + I(x^2) 

  Res.Df     RSS Df Sum of Sq      F    Pr(>F)     

1     18 21530.1                                   

2     17  3053.5  1     18477 102.87 1.258e-08 *** 

--- 

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 

 

As you can see – the parabola fits our data much better than a straight line. ANOVA 

comparing these two models confirms the result: with quadratic term (which also is 

statistically significant in the summary of lm()) our model yields much lower RSS. 

Let’s go back to our cheese. We know quadratic or higher terms won’t be 

necessary. Should we include any interactions? The tree regression analysis should 

give us quick answer. This is still rarely used method, but highly informative and also 

speeds up analyses by employing by-eye inspection. In tree regression all effects from 

our model form tree-like structure; the most influential variables form the longest 

branches. In case of interactions, we should note unequal distribution of variables on 

different branches of the tree, implying differential influence of these variables 

depending on the value of another variable (located higher in the tree hierarchy). Let’s 

look at the example: 

> library(tree) 

> modeltree <- tree(taste~., data = ser) 

> plot(modeltree) 

> text(modeltree) 
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Fig 26: Example of the regression tree 

The longest branches reflect the influence of H2S variable. Second most 

influential is Lactic –lengths of their branches in both groups of H2S are equal 

indicating lack of any interaction. In line with GAM analysis – Acetic seems to have no 

influence on the response. We’ve decided to fit simple multiple regression, with no 

curvilinear terms. We’ll include second-order interaction just to illustrate the way we 

deal with multiple term models but obviously as no interactions seems to be involved 

– we’ll omit 3rd order interaction of all three variables. 

> model3 <- lm(taste ~ Acetic+Lactic+H2S+Acetic*Lactic*H2S- 

+ Acetic:Lactic:H2S, data = ser) 

> summary(model3) 

 

Call: 

lm(formula = taste ~ Acetic + Lactic + H2S + Acetic * Lactic *  

    H2S - Acetic:Lactic:H2S, data = ser) 

 

Residuals: 

    Min      1Q  Median      3Q     Max  

-19.675  -5.273  -1.011   5.785  25.072  

 

Coefficients: 

              Estimate Std. Error t value Pr(>|t|) 

(Intercept)   104.5479   102.2068   1.023    0.317 

Acetic        -30.7974    23.9574  -1.286    0.211 

Lactic        -60.1029   116.5393  -0.516    0.611 

H2S             6.1573    20.9537   0.294    0.772 

Acetic:Lactic  19.0531    22.6367   0.842    0.409 

Acetic:H2S      0.5734     3.5246   0.163    0.872 

Lactic:H2S     -3.6493     4.4944  -0.812    0.425 

 

Residual standard error: 10.33 on 23 degrees of freedom 

Multiple R-squared: 0.6795,     Adjusted R-squared: 0.5959  

F-statistic: 8.127 on 6 and 23 DF,  p-value: 8.718e-05 
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Oops. It seems nothing noticeable is happening in our dataset?! Maybe it’s because 

we’ve included these interactions without any firm evidence they should influence the 

response. We could follow a step by step simplification of our models, based on P 

values and goodness-of-fit parameters – but currently a widely accepted procedure is 

the application of AIC (Akaike’s Information Criterion). R provides an automated 

engine for selecting the best model based on AIC values (a reminder – the lower the 

AIC the better the model’s fit to our data): 

 
> summary(step(model3)) 

Start:  AIC=146.15 

taste ~ Acetic + Lactic + H2S + Acetic * Lactic * H2S - Acetic:Lactic:H2S 

 

                Df Sum of Sq    RSS    AIC 

- Acetic:H2S     1     2.826 2458.9 144.19 

- Lactic:H2S     1    70.402 2526.4 145.00 

- Acetic:Lactic  1    75.651 2531.7 145.06 

<none>                       2456.0 146.15 

 

Step:  AIC=144.19 

taste ~ Acetic + Lactic + H2S + Acetic:Lactic + Lactic:H2S 

 

                Df Sum of Sq    RSS    AIC 

- Lactic:H2S     1    69.427 2528.3 143.02 

<none>                       2458.9 144.19 

- Acetic:Lactic  1   204.750 2663.6 144.59 

 

Step:  AIC=143.02 

taste ~ Acetic + Lactic + H2S + Acetic:Lactic 

 

                Df Sum of Sq    RSS    AIC 

- Acetic:Lactic  1    140.13 2668.4 142.64 

<none>                       2528.3 143.02 

- H2S            1    992.67 3521.0 150.96 

 

Step:  AIC=142.64 

taste ~ Acetic + Lactic + H2S 

 

         Df Sum of Sq    RSS    AIC 

- Acetic  1      0.55 2669.0 140.65 

<none>                2668.4 142.64 

- Lactic  1    533.32 3201.7 146.11 

- H2S     1   1007.66 3676.1 150.25 

 

Step:  AIC=140.65 

taste ~ Lactic + H2S 

 

         Df Sum of Sq    RSS    AIC 

<none>                2669.0 140.65 

- Lactic  1    617.18 3286.1 144.89 

- H2S     1   1193.52 3862.5 149.74 

 

Call: 

lm(formula = taste ~ Lactic + H2S, data = ser) 

 

Residuals: 

    Min      1Q  Median      3Q     Max  

-17.343  -6.530  -1.164   4.844  25.618  

 

Coefficients: 

            Estimate Std. Error t value Pr(>|t|)    
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(Intercept)  -27.592      8.982  -3.072  0.00481 ** 

Lactic        19.887      7.959   2.499  0.01885 *  

H2S            3.946      1.136   3.475  0.00174 ** 

--- 

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1  

 

Residual standard error: 9.942 on 27 degrees of freedom 

Multiple R-squared: 0.6517,     Adjusted R-squared: 0.6259  

F-statistic: 25.26 on 2 and 27 DF,  p-value: 6.551e-07 

 

At the end we’re left we the best-fitting model and indeed – this model shows 

significant trends in variables indicated by tree(). Remember that using any of 

automated methods in R does not release you from being critical and conservative. I 

also suggest reading some literature on AIC and information-based approaches as 

they have as much advantages and followers as drawbacks. You should always use 

both software-driven tests and rational biological thinking. 

 

Robust regression 

As we’ve seen in case of our first diagnostic analysis for smoke.lm – sometimes single 

points in our datasets have a great influence on the fit of our model. Often these points 

are also outliers – and if we don’t have any reason to discard these points as 

erroneous – we have to deal with them in some other way. Robust regression is what 

brings us closer to the solution. In robust regression the algorithms estimate 

parameters of our model minimizing not sum of squared residuals (as in classical OLS 

estimation) but e.g. absolute values of residuals (as in least absolute deviations – LAD) 

or in methods employing M-estimators (which use minimizing of other functions of 

residuals; the OLS and LAD are just special cases of the latter). To use robust 

regression you should download and install the MASS package. The main function of 

interest would be rlm(). I’ll leave exploring these possibilities to those interested: 

 
> install.packages(“MASS”)  

> library(MASS)  

> ?rlm 

 

ANOVA and the use of contrasts 

Linear regression implies that your explanatory variables are continuous. But the 

framework of linear modeling can easily be extended to cases where the variables are 

categorical. In the sense of linear model specification it means estimating differences 

between the overall mean and means associated with specific factor levels rather than 

slopes for continuous variables. It should become clearer when we use the example. 

Here we’ll be analysing the data (adapted from Crawley, 2010) on the clipping 
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experiment carried out to show how cutting shoots or roots of adjacent plants 

influences the production of biomass of the focal individual and hence – the 

competition among them. 

> clipping <- read.table(file="competition.txt", sep="\t", head=T) 

> summary(clipping) 

    biomass         clipping 

 Min.   :415.0   control:6   

 1st Qu.:508.8   n25    :6   

 Median :568.0   n50    :6   

 Mean   :561.8   r10    :6   

 3rd Qu.:631.8   r5     :6   

 Max.   :731.0               

> clipanova <- aov(biomass~clipping, data=clipping) 

> summary.aov(clipanova) 

            Df Sum Sq Mean Sq F value   Pr(>F)    

clipping     4  85356 21339.1  4.3015 0.008752 ** 

Residuals   25 124020  4960.8                     

--- 

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1  

 

 

> summary.lm(clipanova) 

 

Call: 

aov(formula = biomass ~ clipping, data = clipping) 

 

Residuals: 

     Min       1Q   Median       3Q      Max  

-103.333  -49.667    3.417   43.375  177.667  

 

Coefficients: 

            Estimate Std. Error t value Pr(>|t|)     

(Intercept)   465.17      28.75  16.177  9.4e-15 *** 

clippingn25    88.17      40.66   2.168  0.03987 *   

clippingn50   104.17      40.66   2.562  0.01683 *   

clippingr10   145.50      40.66   3.578  0.00145 **  

clippingr5    145.33      40.66   3.574  0.00147 **  

--- 

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1  

 

Residual standard error: 70.43 on 25 degrees of freedom 

Multiple R-squared: 0.4077,     Adjusted R-squared: 0.3129  

F-statistic: 4.302 on 4 and 25 DF,  p-value: 0.008752 

 

First of all – we see two types of output available here. In case of regression 

the output was simple – we just got the intercept (the overall mean for all explanatory 

variables equal to zero) and estimates of slope(s). Here – it’s different. In the 

summary.aov table we get familiar ANOVA table listing all relevant sources of 

variation and partitioning of this variation allowing for the F-test. summary.lm is 

different: here we have some estimates for all treatment levels. What do they mean? 

By default, ANOVA in R fits so called treatment contrasts that compare the intercept 

(which is the mean of the first – alphabetically or numerically – factor level; control in 
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this case) with the means for other treatments. As you could expect – these contrasts 

may be a little confusing – here it looks like we’d have to retain all parameters in our 

model - which in fact is not the case! Note that e.g. the estimates for clippingr10 and 

clippingr5 are not statistically different (the difference is less than ~2SE) so they 

could be merged together freeing some degrees of freedom and simplifying our 

ANOVA. Moreover – these contrasts are not orthogonal – they’re not independent one 

from another simply because comparing Intercept with clipping25 and 

clipping50 employs multiple comparison of the same means. Could we specify our 

own contrasts? Yes – and actually it’s quite easy. The only thing we should learn is the 

syntax of contrast specification. How it works? Contrasts are specified by assigning 

positive and negative numbers to the opposing groups of means (or single means) that 

have to be compared. E.g. if we wanted to compare our control with four treatment 

means, we could assign some negative value to the control, and positive values to the 

remaining means. The trick is that these + / - coefficient should add up to zero. For our 

experiment we could specify the following contrasts: control vs. treatment means; 

shoot clipping means vs. root clipping means; means for different shoot clipping 

levels; means for different root clipping means. The matrix specifying these contrasts 

would be as follows: 

> comparis <- cbind(c(4,-1,-1,-1,-1),c(0,1,1,-1,-1), 

+ c(0,0,0,-1,1),c(0,1,-1,0,0)) 

> rownames(comparis) <- c("control", "clippingn25", 

+ "clippingn50", "clippingr5", "clippingr10") 

> comparis 

            [,1] [,2] [,3] [,4] 

control        4    0    0    0 

clippingn25   -1    1    0    1 

clippingn50   -1    1    0   -1 

clippingr5    -1   -1   -1    0 

clippingr10   -1   -1    1    0 

 

Here each column stands for a single comparison, rows stand for treatment levels. 

Every time zero appears in the matrix, it means that a particular effect is excluded 

from the comparison. You can see that all columns add up to zeros. Moreover, 

pairwise products of any of two columns add to zero, which indicates that our 

contrasts are orthogonal (independent comparisons). 

Assigning contrasts works by simply modifying the contrasts attribute of our 

data frame. The we can rerun our ANOVA. Be careful of the double naming 

clipping$clipping, resulting from the fact that both our data and the treatment on 

our data are called clipping: 

> contrasts(clipping$clipping) <- comparis 

> clipanova <- aov(biomass~clipping, data=clipping) 
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> summary.lm(clipanova) 

 

Call: 

aov(formula = biomass ~ clipping, data = clipping) 

 

Residuals: 

     Min       1Q   Median       3Q      Max  

-103.333  -49.667    3.417   43.375  177.667  

 

Coefficients: 

             Estimate Std. Error t value Pr(>|t|)     

(Intercept) 561.80000   12.85926  43.688  < 2e-16 *** 

clipping1   -24.15833    6.42963  -3.757 0.000921 *** 

clipping2   -24.62500   14.37708  -1.713 0.099128 .   

clipping3    -0.08333   20.33227  -0.004 0.996762     

clipping4    -8.00000   20.33227  -0.393 0.697313     

--- 

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1  

 

Residual standard error: 70.43 on 25 degrees of freedom 

Multiple R-squared: 0.4077,     Adjusted R-squared: 0.3129  

F-statistic: 4.302 on 4 and 25 DF,  p-value: 0.008752 

 

How should we interpret these results? For every contrast we have one 

clippingX label. They are respective to the contrasts we’ve specified. It’s clear that 

the only parameter we need in our model reflects comparison of the control with all 

four treatments. Both shoot vs. root pruning and shoot/root pruning themselves don’t 

generate any statistically significant differences. It’s important to note that – although 

all clippingX’s estimate differences between means specified in contrasts – the 

intercept is no longer for the control-treatment mean. Now it estimates the overall 

mean (all treatments and control pooled together). 

 

Generalized Linear Models 

Sometimes – or better said – quite often (in biology) our data do not conform with the 

assumption of error normality. If our data are in form of counts, proportions, binaries 

or time-to-death – we are likely to observe diverse kinds of relationships between 

mean ad variance. This violates one of the most important assumptions of classical 

ANOVA or linear regression, i.e. the assumption of homogeneity of variances. One 

possible solution is to transform our data (using standard methods such as logs, roots 

– or by using more advanced approaches, like the boxcox() function from the MASS 

library, applying the Box-Cox transformation). Alternatively we can use linear 

modeling by applying an appropriate link function that normalizes our response 

rather than using pure response data. The latter approach is equivalent with using 

generalized linear models (generalized stands for “allowing non-normal error 

structures”). To do this we employ glm() function in R. 
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Let’s see how it works by using a simulated dataset. We will define our theoretical 

generalized linear equation (i.e. we’ll know the exact form of the linear predictor) and 

then we’ll see if an appropriate GLM model yields correct values. Here we’ll use both 

normally and Poisson distributed responses, with the intercept of 1 (μ = 1), regression 

coefficients β2 = 0 and β3 = 1 and residual variance 2; thus our full linear predictor (it’s 

parametrical form in the population) would be y = 0.x + 1.z and we’ll fit the following 

model: y ~ μ + β2 + β3 + error. We aim at estimating the values of the intercept and two 

regression coefficients, plus the residual variance. 

 

> x <- runif(1000, 0, 1) #uniform random variable 

> z <- rnorm(1000, 0, sqrt(1.5)) #normal random variable 

> lin <- 1 + 0*x + 1*z #desired linear predictor 

> y <- rnorm(1000, lin, sqrt(2)) #added residuals form the response 

> yp <- rpois(1000, exp(lin)) #alternative Poisson response 

> glmdata <- data.frame(yn = y, yp = yp, x = x, z = z) 

> glmnorm <- glm(yn ~ x + z, data=glmdata) 

> summary(glmnorm) 

 

Call: 

glm(formula = yn ~ x + z, data = glmdata) 

 

Deviance Residuals:  

     Min        1Q    Median        3Q       Max   

-4.58847  -0.87353   0.04924   0.85829   3.66437   

 

Coefficients: 

            Estimate Std. Error t value Pr(>|t|)     

(Intercept)  1.02776    0.09139  11.246   <2e-16 *** 

x            0.08314    0.15163   0.548    0.584     

z            1.04039    0.03553  29.284   <2e-16 *** 

--- 

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1  

 

(Dispersion parameter for gaussian family taken to be 1.932124) 

 

    Null deviance: 3585.4  on 999  degrees of freedom 

Residual deviance: 1926.3  on 997  degrees of freedom 

AIC: 3501.5 

 

Number of Fisher Scoring iterations: 2 

 

The results of this fit (of course every time they’ll be slightly different due to random 

nature of our input data) are satisfactory; they correspond to what we’ve simulated. 

Particularly, the values of the regression coefficients are correct. Now see what would 

happen if you tried fitting the Poisson response using normal error structure: 
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> glmnorm2 <- glm(yp ~ x + z, data = glmdata) 

> summary(glmnorm2) 

 

Call: 

glm(formula = yp ~ x + z, data = glmdata) 

 

Deviance Residuals:  

    Min       1Q   Median       3Q      Max   

 -9.656   -3.996   -1.318    1.795  115.922   

 

Coefficients: 

            Estimate Std. Error t value Pr(>|t|)     

(Intercept)   5.9117     0.5119  11.548   <2e-16 *** 

x            -0.4318     0.8493  -0.508    0.611     

z             5.6205     0.1990  28.242   <2e-16 *** 

--- 

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1  

 

(Dispersion parameter for gaussian family taken to be 60.6248) 

 

    Null deviance: 108799  on 999  degrees of freedom 

Residual deviance:  60443  on 997  degrees of freedom 

AIC: 6947.6 

 

Number of Fisher Scoring iterations: 2 

 

Due to severe violation of assumptions (in Poisson data the variance exhibits 

a linear relationship with the mean) the estimates of our parameters are severely 

biased. Removing this bias is possible by using an appropriate link function (i.e. by 

specifying the correct error structure): 

> glmpois <- glm(yp ~ x + z, data=glmdata, family = poisson) 

> summary(glmpois) 

 

Call: 

glm(formula = yp ~ x + z, family = poisson, data = glmdata) 

 

Deviance Residuals:  

    Min       1Q   Median       3Q      Max   

-3.0094  -0.9051  -0.1908   0.6208   3.3223   

 

Coefficients: 

            Estimate Std. Error z value Pr(>|z|)     

(Intercept)  0.98370    0.03228  30.475   <2e-16 *** 

x            0.01154    0.04551   0.254      0.8     

z            0.99788    0.01089  91.647   <2e-16 *** 

--- 

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1  

 

(Dispersion parameter for poisson family taken to be 1) 

 

    Null deviance: 9590.9  on 999  degrees of freedom 

Residual deviance: 1048.3  on 997  degrees of freedom 

AIC: 3741.9 
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Number of Fisher Scoring iterations: 5 

 

Here our estimates are correct because we applied the correct error 

structure, in accordance with the distribution of the response in our data. That should 

emphasize the importance of careful inspection of your data. Unfortunately, 

sometimes using the proper distribution is not enough to fit an appropriate model to 

your data. Here we have the luxury of knowing exactly what is the true form of the 

linear predictor that was used to generate the data. In reality we rarely have this 

opportunity and we have to ‘guess’ the best composition of our final model. In case of 

Poisson or binomial distributions failing to include some effects in our model 

introduces additional residual variation. Unfortunately, in case of such data this extra 

variation violates the most basic assumption about e.g. Poisson distribution and this is 

the equality of the mean and variance. We call this overdispersion and it’s quite 

common in the real data. We can show how it influences by simply intentionally 

omitting one important part of our predictor: 

> glmpois2 <- glm(yp ~ x, data=glmdata, family = poisson) 

> summary(glmpois2) 

 

Call: 

glm(formula = yp ~ x, family = poisson, data = glmdata) 

 

Deviance Residuals:  

     Min        1Q    Median        3Q       Max   

-3.39770  -2.45693  -1.27163   0.09496  25.49511   

 

Coefficients: 

              Estimate Std. Error z value Pr(>|z|)     

(Intercept)  1.7530490  0.0273656  64.060   <2e-16 *** 

x           -0.0003854  0.0454007  -0.008    0.993     

--- 

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1  

 

(Dispersion parameter for poisson family taken to be 1) 

 

    Null deviance: 9591  on 999  degrees of freedom 

Residual deviance: 9591  on 998  degrees of freedom 

AIC: 12283 

 

Number of Fisher Scoring iterations: 6 

 

Overdispersion in this analysis (predictors account only for some proportion 

of variance and thus the residual variance in higher than expected from the Poisson 

process) causes severe bias in the estimates. We can have the idea about the degree of 

overdispersion by looking at the residual deviance to residual df ratio: in non-

overdispersed data it should be equal to one. Here it’s nearly 10 times higher! Roughly 
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speaking, our data contain 10 times as much variation as they should according to the 

Poisson process. 

We could try fitting this model with alternative to Poisson called 

quasiPoisson, which was designed to deal with this additional variation: 

> glmqpois <- glm(yp ~ x, family=quasipoisson, data=glmdata) 

> summary(glmqpois) 

 

Call: 

glm(formula = yp ~ x, family = quasipoisson, data = glmdata) 

 

Deviance Residuals:  

     Min        1Q    Median        3Q       Max   

-3.39770  -2.45693  -1.27163   0.09496  25.49511   

 

Coefficients: 

              Estimate Std. Error t value Pr(>|t|)     

(Intercept)  1.7530490  0.1189384  14.739   <2e-16 *** 

x           -0.0003854  0.1973240  -0.002    0.998     

--- 

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1  

 

(Dispersion parameter for quasipoisson family taken to be 18.8901) 

 

    Null deviance: 9591  on 999  degrees of freedom 

Residual deviance: 9591  on 998  degrees of freedom 

AIC: NA 

 

Number of Fisher Scoring iterations: 6 

 

As you can see – the significance of x went down and SE increased, but nothing else 

really has changed. Also, we can see that the dispersion parameter for Poisson 

distribution was simulated rather than fixed to one. Quasipoisson works out the exact 

value of the ratio of residual deviance to residual df and adjusts the estimates using 

this value. Still, however, the estimates are far from being correct. The reason for this 

is that quasipoisson uses multiplicative overdispersion model and it’s obvious that – 

given the nature of our simulated linear predictor – omitted z had an additive 

influence on the response (we added z rather than multiplied by z; see Hadfield 

(2010a) for more details). Since this is the case in most biological data – we should try 

applying additive overdispersion models. A recently emerged alternative is to use 

Markov Chains (Bayesian methodology) rather than frequentists’ approach of 

Maximum Likelihood. MC based methods are sometimes slower and cumbersome, but 

run long enough (with large enough number of Monte Carlo randomizations) they 

provide accurate and unbiased estimates, especially in case of “weird” distributions 

such as gamma-distributed responses (common in survival analysis) or zero-inflated 

Poisson responses. Let’s try the power of MCMC in our case: 
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> install.packages("MCMCglmm") 

> library(MCMCglmm) 

> glmmcmc <- MCMCglmm(yp ~ x, family = "poisson", data = glmdata,  

+ verbose=F) 

> summary(glmmcmc) 

 

 Iterations = 12991 

 Thinning interval  = 3001 

 Sample size  = 1000  

 

 DIC: 4489.607  

 

 R-structure:  ~units 

 

      post.mean l-95% CI u-95% CI eff.samp 

units     1.462    1.260    1.628    878.9 

 

 Location effects: yp ~ x  

 

            post.mean l-95% CI u-95% CI eff.samp  pMCMC     

(Intercept)   0.97338  0.79778  1.14919    879.8 <0.001 *** 

x             0.08298 -0.20720  0.35077   1000.0  0.574     

--- 

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 

 

As expected - our estimates are much closer to their theoretical values. Moreover – 

MCMCglmm does not assume or simulate any value for residual variance. MCMCglmm 

knows, that it should fix the residual variance as it cannot be estimated in case of 

Poisson distribution. So why there’s some value next to units (which stands for 

residuals in MCMCglmm)? As a matter of fact – looking into the object containing 

estimates of variances ($VCV) for random effects (here it’s only residual variance) 

allows for analysing this value more thoroughly. Here we’ll use two functions – one 

uses mode value of the posterior distribution as an estimate of variance; the second 

uses highest posterior density to calculate desired percentile range, by default it is 

95% credible interval: 

> posterior.mode(glmmcmc$VCV) 

   units  

1.459504  

> HPDinterval(glmmcmc$VCV) 

         lower    upper 

units 1.259746 1.628112 

attr(,"Probability") 

[1] 0.95 

 

The value of residual variance looks strange, but when you think where did the extra 

variation come from – you should quickly find the reason for that. Extra variation in 

our data comes from not including the z explanatory variable. It was generated using 

1.5 as it’s variance – and our residual variance estimate corresponds to that value. 
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Overview of modelling generic functions and attributes 

In one of his books Crawley went as far as to say “Fitting models to data is the central 

function of R”. It’s hard not to agree with him when you realize the extent of functions 

making statistical modelling in R so easy and straightforward. The following table 

contains an overview of functions you can apply to model objects as well as the most 

important arguments used together with formulae in nearly all modelling functions. 

Functions are listed first, than arguments. 

 

 

 
Table 8: Functions and arguments used in statistical modeling 

Function Description 

fitted() 
Provides fitted values for predictors provided to the modelin 
gfunction 

resid() Returns residuals from the model 

predict(0 Predicts new values for provided x values 

AIC() 
Returns AIC score (only for ML/REML methods; not applicable 
for quasilikelihood and Bayesian methods) 

plot() Diagnostic plots 

update() Updates the model object 

coef() Returns estimated coefficients of the model 

anova() 

Compares two model objects (some modelling pckages are not 
compatible in this sense, e.g. one cannot compare lmer and glm 
objects) 

summary.aov() Returns ANOVA table for model fitting 

summary.lm() Returns regression coefficients for model fitting 

subset(data_set, LOGICAL) Returns subset of the data_set satisfying the LOGICAL condition 

Arguments of modelling funtions Description 

na.action 

What should be done with NAs? Default is na.fail (returns 
error); other possibilities are na.omit or na.exclude 
(affects the way df are calculated for RSS – see chapter 3); does 
not work with MCMCglmm (use 
data=na.omit(your_data) instead)  

weight 
Provides vector object for weighting the residuals; here what is 
minimized in OLS is weighted sum of squared residuals  

data Defines the data object 

family Defines the error distribution (in generalized models) 

prior In MCMCglmm – defines prior distributions of random effects 
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mev 
In MCMCglmm – provides measurements errors for meta-
analysis 

ped In MCMCglmm – provides pedigree for animal model 

random In MCMCglmm – formula for random effects 

saveX, saveZ 
In MCMCglmm – savesthe design matrices for random 
fixed/random effects, respectively 

 

 

You should also remember that you can always invoke type-control functions, 

such as attributes(model_object) to see what type of data are contained within 

such item. To get to some particular “piece” of model object we have fitted just use the 

dollar operator: model_object$attribute_name. 
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Part 6 ~ GLMM 

Overview 

In case of (G)LMs we are treated all model terms as fixed effects. However in biology 

we often fail to specify any particular effect with our treatment/grouping factors. 

Things such as populations, plots, nests are assumed to generate variability in our 

data through the simple fact that they’re drawn at random from some large 

population. In case of fixed effects any change in the response variable comes from the 

data associated with a specified, particular level of this effect whereas in random 

effects some information comes from data in a particular level, but we also weight the 

outcome using data from other levels of random effect, taking into account also 

likelihood this effect could take other values. In terms of mathematical 

implementation we simply treat variance associated with fixed effects as very large 

(infinite) and are interested in the overall effect of a treatment/factor on the mean of 

our response. In case of random effects we estimate this variance precisely and are 

interested not in the means associated with particular levels but in the overall 

variability introduced in our data by these levels. A good rule of thumb is to treat 

effects with informative levels as fixed and those with non-informative levels (such as 

grouping factors, replication units, blocks etc.) as random (Crawley 2010). 

In R there are several possibilities of fitting mixed models (implementing both 

fixed and random effects). These methods vary according to their performance, output 

format, time required to complete the analysis and data they accept. In the majority of 

the cases we will use either lmer from lme4 package or MCMCglmm from MCMCglmm 

package (Hadfield, 2010a). Both fit generalized (possible non-normal response) and 

random effects, they just differ in the way they achieve that. The former uses classical 

REML method, whereas the latter allows for incorporating additional information in 

the Bayesian framework and uses Monte Carlo simulations and Markov Chains. Is 

there any difference in their reliability or effectiveness? Well – there is. First of all – 

lmer performs well only for Gaussian data. If you’d like to analyse non-normal data, 

especially using distributions where variance should not be estimated (it equals the 

mean; e.g. (zero-inflated)Poisson, binomial), choose MCMCglmm. Real data are often 

overdispersed (see discussion in the previous chapter) due to effects we didn’t 

account for and quasi distributions in lmer – that should deal with overdispersion – 

somehow fail to do this correctly. Maybe it’s because of the ‘under development’ 

status lme4 is still having. Secondly – when fitting categorical random interactions, the 
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better choice is MCMCglmm because it allows for fitting factor-specific residual 

variances; if not accounted for and present, such differences in residual variance 

would be likely to be confounded with the variance of factor. Third - comparing 

models with non-normal response using likelihood ratio tests or AIC should be treated 

with caution – in such cases likelihood is not calculated but approximated. MCMCglmm 

provides simple DIC-based system for selecting competing models. Of course – 

MCMCglmm has its drawbacks: for large data and complex models calculations may be 

slow and tedious – nevertheless they provide reliable estimates, especially for “weird” 

distributions.  

Simple mixed model and why it should be mixed? 

To see mixed effects in action let’s simulate simple data. Imagine you’ve measured tail 

lengths in birds from 20 plots in the forest, 5 birds per plot (after Davey 2009). You’d 

like to know the effect these plots have on your data. 

> plot <- as.factor(LETTERS[rep(1:20,5)]) #generate plots 

> ploteff <- rnorm(20, mean=0, sd=sqrt(50)) #effects of the plots 

> lin <- 100 + ploteff[plot] #form predictor with intercept of 100 

> tail <- rnorm(100, mean=lin, sd=sqrt(50)) #generate data from normal 

> mydata <- data.frame(plot = plot, tail = tail) 

 

If we treated plots as fixed effect – here the best estimate of this effects would 

be simply the mean for each plot: 

> tapply(tail, plot, mean) #apply some function to data by groups 

        A         B         C         D         E         F  

 94.88551 104.19274  95.84284 104.09997 105.07422  88.30977  

        G         H         I         J         K         L  

 87.14866 115.38389  98.40378  92.86162 116.21911  89.03037  

        M         N         O         P         Q         R  

 86.91065 100.27507 108.72091 103.11933 111.70116  92.39619  

        S         T  

 99.91879 109.81192 

 

This should give the same results as fitting a linear model: 

> prfixed <- glm(tail ~ plot, data = mydata)$coef 

> prfixed 

(Intercept)       plotB       plotC       plotD       plotE       plotF  

 96.2846690  -1.6781011   6.2437841  11.8258226   0.5314776   6.4617477  

      plotG       plotH       plotI       plotJ       plotK       plotL  

-11.8751458  -9.9479240  -1.1035683  17.4540470   2.0472615   4.4722584  

      plotM       plotN       plotO       plotP       plotQ       plotR  

  2.6331821  -6.2494063  -1.4984548  20.6336267  -6.0521353   8.6533025  

      plotS       plotT  

 -4.4806945   7.2699813 

> prfixed <- glm(tail ~ plot-1, data = mydata)$coef 
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> prfixed 

    plotA     plotB     plotC     plotD     plotE     plotF     plotG  

 96.28467  94.60657 102.52845 108.11049  96.81615 102.74642  84.40952  

    plotH     plotI     plotJ     plotK     plotL     plotM     plotN  

 86.33674  95.18110 113.73872  98.33193 100.75693  98.91785  90.03526  

    plotO     plotP     plotQ     plotR     plotS     plotT  

 94.78621 116.91830  90.23253 104.93797  91.80397 103.55465 

 

In the first case we forgot that in modelling functions, for categorical effects we’ll get 

the Intercept and deviations from it; thus we’ve subtracted 1 from the formula to get 

the means. How it compares to the situation in which we treat plots as random effect? 

We’ll use lmer (note that in lmer fixed effects are defined in a standard way whereas 

random effects enter through a | operator and in parentheses – the meaning of this 

will be explained later): 

> install.packages(“lme4”) 

> library(“lme4”) 

> rantail <- lmer(tail~1+(1|plot), data=mydata) 

> summary(rantail) 

Linear mixed model fit by REML  

Formula: tail ~ 1 + (1 | plot)  

   Data: mydata  

   AIC   BIC logLik deviance REMLdev 

 706.5 714.3 -350.3    703.6   700.5 

Random effects: 

 Groups   Name        Variance Std.Dev. 

 plot     (Intercept) 62.146   7.8833   

 Residual             44.362   6.6605   

Number of obs: 100, groups: plot, 20 

 

Fixed effects: 

            Estimate Std. Error t value 

(Intercept)   98.552      1.884    52.3 

 

Note that here we use @ instead of $ to access specific information from our 

model (here we extract fixed and random effects coefficients for values fitted by our 

model): 

 

> prrand <- rantail@ranef+rantail@fixef 

> prrand 

 [1] 96.56778  95.09925 102.03183 106.91678  97.03289 102.22258  86.17562 

 [8] 87.86217  95.60203 111.84214  98.35938 100.48154  98.87213  91.09881 

[15] 95.25646 114.62465  91.27145 104.14045  92.64664 102.92988 

 

 What’s essential here is that the variance in our estimates is much higher 

when we treat these effects as fixed: 

> var(prfixed) 
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[1] 71.01838 

> var(prrand) 

[1] 54.38815 

 

Also, this variance for random version of our model is closer to the value (50) we’ve 

simulated at the beginning. 

Let’s move to something more realistic. We’ll employ data on blue tits for 

tarsus lengths and back colours. Tits were cross-fostered and dam indicates real 

mother, whereas fosternest specifies nest of rearing. We’re interested in the effects of 

dams and nest of rearing. 

> data(BTdata) 

> sikor <- lmer(tarsus~sex+(1|dam)+(1|fosternest),data=BTdata) 

> summary(sikor) 

Linear mixed model fit by REML  

Formula: tarsus ~ sex + (1 | dam) + (1 | fosternest)  

   Data: BTdata  

  AIC  BIC logLik deviance REMLdev 

 2087 2115  -1038     2065    2075 

Random effects: 

 Groups     Name        Variance Std.Dev. 

 dam        (Intercept) 0.220259 0.46932  

 fosternest (Intercept) 0.069204 0.26307  

 Residual               0.567919 0.75360  

Number of obs: 828, groups: dam, 106; fosternest, 104 

 

Fixed effects: 

            Estimate Std. Error t value 

(Intercept) -0.40566    0.06706  -6.049 

sexMale      0.76879    0.05714  13.455 

sexUNK       0.21043    0.12670   1.661 

 

Correlation of Fixed Effects: 

        (Intr) sexMal 

sexMale -0.449        

sexUNK  -0.210  0.224 

 

It’s clear that both fosternest and dam explain significant proportion of variance in 

our data. Is that true? In case of mixed models tests using typical Wald-type statistics 

(such as t-Student test) are not proper. It’s recommended to use likelihood ratio test. 

Fortunately, the anova() function appears to be handy here: 

> sikor2 <- lmer(tarsus~sex+(1|dam),data=BTdata) 

> anova(sikor,sikor2) 

Data: BTdata 

Models: 

sikor2: tarsus ~ sex + (1 | dam) 

sikor: tarsus ~ sex + (1 | dam) + (1 | fosternest) 

       Df    AIC    BIC  logLik  Chisq Chi Df Pr(>Chisq)     

sikor2  5 2086.7 2110.2 -1038.3                              

sikor   6 2077.1 2105.4 -1032.6 11.518      1  0.0006893 *** 
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--- 

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 

 

R knows that here simple RSS (as in lm() and aov()) is not enough. As we can see 

both logLik and AIC are lower for the 2nd model (with both effects) – we can than 

conclude that the fosternest effect is significant here. Unfortunately, lmer() does not 

allow for models with no random effects (so that we could test dam vs. model with 

just an intercept). Here other functions such as MCMCglmm are much more useful. 

 Adding to our confusion, you actually cannot see the explicit tests for fixed 

effects in the model above. Unfortunately, the only thing lmer provides are the t 

values – or F values if one apply the anova() function. We can try testing our fixed 

effects using these values but remember to use proper degrees of freedom (Hadfield 

2009). Probably most conservative df for residuals in our case would be the number of 

observations minus the number of levels for dams minus the number of levels for 

fosternest. 

> tv<-summary(sikor2)@coefs[,3][2] 

> df<-dim(BTdata)[1]-nlevels(BTdata$dam)- 

+ nlevels(BTdata$fosternest) 

> 2*(1-pt(tv,df)) 

sexMale  

      0 

> Fv<-anova(sikor2)[,4][1] 

> 1-pf(Fv,2,df) 

[1] 0 

 Important and so far unexplained thing is this mysterious 1| in the 

specification of random effects. Vertical line means simply “random interaction”. But 

what’s interacting with what here? One stands for intercept – so you  should read this 

definition as “see how much variation in intercept is introduced by the right-hand 

term (here dams or fosternests)”. It’s quite straightforward to introduce another fixed 

effect in our formula on the left side. Say, you want to see if dam effect is sex specific – 

i.e. the variance resulting from dams is sex-specific and maybe there’s some significant 

covariance in dam effects between sexes. To see if that’ the case, enter the following: 

> siksex <- lmer(tarsus~sex+(sex-1|dam)+(1|fosternest),data=BTdata) 

> summary(siksex) 

Linear mixed model fit by REML  

Formula: tarsus ~ sex + (sex - 1 | dam) + (1 | fosternest)  

   Data: BTdata  

  AIC  BIC logLik deviance REMLdev 

 2097 2149  -1037     2065    2075 

Random effects: 

 Groups     Name        Variance Std.Dev. Corr         

 dam        sexFem      0.227304 0.47676               

            sexMale     0.209747 0.45798  1.000        

            sexUNK      0.296946 0.54493  1.000 1.000  
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 fosternest (Intercept) 0.066462 0.25780               

 Residual               0.568052 0.75369               

Number of obs: 828, groups: dam, 106; fosternest, 104 

 

Fixed effects: 

            Estimate Std. Error t value 

(Intercept) -0.40616    0.06738  -6.028 

sexMale      0.77018    0.05714  13.479 

sexUNK       0.19936    0.12878   1.548 

 

Correlation of Fixed Effects: 

        (Intr) sexMal 

sexMale -0.470        

sexUNK  -0.171  0.218 

 

Now it’s sex on the left hand of | to tell R that we want sex-specific effects of 

dams (or – how much variation in sexes is caused by dam effects; note that in some 

cases sex is unknown – UNK – but we did not remove such data from the dataset). We 

removed the intercept so that estimates will appear as sex-specific variances rather 

than deviations from variance for females (alphabetically first level of sex). Resulting 

(co)variance matrix is below; the order of columns and rows is alphabetical (females, 

males, UNK). 

> matrix(VarCorr(siksex)$dam,3,3) 

          [,1]      [,2]      [,3] 

[1,] 0.2273043 0.2183493 0.2598021 

[2,] 0.2183493 0.2097471 0.2495668 

[3,] 0.2598021 0.2495668 0.2969462 

 

It seems that the degree of sex-specific variation is not large but formal test should be 

used here. We could specify alternative (co)variance structures and compare models 

using likelihood ratio test (anova()) – I’ll leave exploration to you. The only thing 

worth noting is that sometimes (co)variance definitions are not straightforward; the 

following table gives you most common ones with the way you could specify them in 

either lmer or MCMCglmm. 

You can see that fitting random interactions may  more complicated than 

writing A:B. Some of these interactions will become clearer in the next section, where 

we’ll deal with multivariate mixed models. Also, note that in the left-hand side of | you 

can have not only categorical variables but also continuous ones; in such a case 

resulting (co)variance matrix will contain variances for random-effect specific 

intercepts and slopes and possibly also covariances between them. For more details 

please see the Advanced Issues section. 

Speaking of MCMCglmm – fitting our blue tit model in MCMCglmm is a little bit 

tricky. MCMCglmm is Bayesian-based and thus it requires some additional information 

in form a prior. Prior is simply anything we know about our parameters (based on 
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experience or previous research) and we can use this information in our analyses. 

Sometimes researchers are concerned that in Bayesian statistics we incorporate some 

a priori information, possibly subjective. But fortunately we can use so-called non-

informative priors, where we assume that we know little a priori and want (nearly)all 

the information to come from our data. 

 
Table 9: Possible covariance structures in lmer and MCMCglmm (adapted from Hadfield 2010a) 

lmer MCMCglmm (Co)variance Correlation 

(1|dam) dam 

  

(sex-1|dam) us(sex):dam 

  

(1|sex:dam) sex:dam 

  

(1|dam)+ 

(1|sex:dam) 

dam+ 

sex:dam 

  

- idh(sex):dam 

  

- corh(sex):dam 

  

- cor(sex):dam 

  

 

 Priors or random are specified as lists, where there’s one element called R (for 

residual variance) and (optionally, if needed), one or more elements called G1, G2, Gn 

pooled inside a G element. G-elements provide priors for other random effects. Inside 

every element we enter V (variance for our prior) and nu (so called belief parameter, 

often written as simple n); it’s a good practise to set this parameter as (m-1)+0.001 

to obtain non-informative prior, where m is the number of response variables and 
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hence the dimension of (co)variance matrix; the greater the n value, the more we 

believe in the value V provided in the greater will be its influence on our results; 

negative priors are possible, however they result in so called improper prior 

distributions (essentially, not summing up to one) and should be used with care – I’ll 

recommend reading Hadfield’s notes from MCMCglmm’s CRAN page for more detail 

both on improper priors and on ways of setting the ). 

> prsik <- list(R=list(V=1,n=0.001),G=list(G1=list(V=1,n=0.001), 

+ G2=list(V=1,n=0.001))) 

> sikormc <- MCMCglmm(tarsus~sex, random=~fosternest+dam, 

+ data=BTdata, prior=prsik, verbose=F) 

> summary(sikormc) 

 

 Iterations = 12991 

 Thinning interval  = 3001 

 Sample size  = 1000  

 

 DIC: 1991.724  

 

 G-structure:  ~fosternest 

 

           post.mean l-95% CI u-95% CI eff.samp 

fosternest   0.06684 0.002443   0.1208    381.7 

 

               ~dam 

 

    post.mean l-95% CI u-95% CI eff.samp 

dam    0.2251   0.1408   0.3245     1074 

 

 R-structure:  ~units 

 

      post.mean l-95% CI u-95% CI eff.samp 

units    0.5716   0.5151   0.6342    765.7 

 

 Location effects: tarsus ~ sex  

 

            post.mean l-95% CI u-95% CI eff.samp  pMCMC     

(Intercept)   -0.4037  -0.5233  -0.2650   1000.0 <0.001 *** 

sexMale        0.7705   0.6582   0.8846   1000.0 <0.001 *** 

sexUNK         0.2133  -0.0189   0.4858    895.1    0.1     

--- 

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 

 

Estimates of dam, fosternest and residual (here called units) variances are with good 

agreement with those from lmer (up to Monte Carlo error). Some practise is needed 

to interpret results from MCMCglmm. summary() provides confidence intervals for 

variance estimates (G-structure and R-structure) and pMCMC values for fixed (location) 

effects (interpreted as P values). We can visualise posterior distributions for fixed and 

random effects: 
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> plot(sikormc) 

 
Fig 27: Posterior distributions of random effects 

Here I show only the last page of plots. Each left-hand side plot shows the trace of time 

series (nr of iteration on x-axis and parameter values and y-axis) for random Monte 

Carlo samplings from the posterior distribution, and right-hand side plots show these 

estimated posterior distributions (as smoothed histograms). For all estimated 

parameters. 

You can also access specifically fixed effects (sikormc$Sol object) and 

random variances (sikormc$VCV). Obtaining exact values of the expectations (mode 
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of the posterior distribution) and confidence intervals requires using special 

functions: 

> posterior.mode(sikormc$VCV) 

fosternest        dam      units  

0.05505678 0.21926275 0.57147922  

> HPDinterval(sikormc$VCV) 

                 lower     upper 

fosternest 0.002442576 0.1207558 

dam        0.140842844 0.3244714 

units      0.515111574 0.6341997 

attr(,"Probability") 

[1] 0.95 

 

One of great advantages of MCMC-based GLMMs is simplicity of using 

posterior distributions. If we e.g. wanted to calculate proportion of variance explained 

by dam effect – we can simply use whole distributions. Also – confidence intervals will 

be calculated that way, which circumvents many difficulties and approximation issues 

when calculating confidence interval for (co)variance ratios (e.g. heritabilities) in 

REML-based algorithms. Here, the only thing we have to know is the exact position of 

each random effect in VCV object (you can infer this from the above output; effects are 

in columns ordered in the same way as their modes in posterior.mode output, i.e. 

dam is in the second column): 

> propdam <- sikormc$VCV[,2]/(sikormc$VCV[,1]+ 

+ sikormc$VCV[,2]+sikormc$VCV[,3]) #var for dams over sum of all vars 

> posterior.mode(propdam) 

     var1  

0.2670148  

> HPDinterval(propdam) 

         lower     upper 

var1 0.1731281 0.3452775 

attr(,"Probability") 

[1] 0.95 

 

Try to specify (using table with different random interaction definitions) the same 

interactions we’ve examined in lmer(). Also, see if you can extract all the relevant 

information (variances and covariances) from $VCV object. 

 

Animal model 

In a simple mixed model each random effect has it’s associated variance structure. 

Generally we assume that different levels of the random effect are independent from 

each other, and data within each level are identically distributed, implying 

homoscedascity of variances (i.e. random effects are i.i.d. – independent and 



107 

identically distributed). In terms of a linear model parameters, random effects are 

assumed to come from a multivariate normal distribution with mean 0 and defined 

(co)variance structure, i.e. σR
2I (I is the identity matrix: I[i,j]=0 for i≠j and 1 gdy i=j). 

However, in some cases we cannot assume independence of different levels of a 

random effect, i.e. if we’re dealing with genotypes – the way they influence variability 

in the response may depend on the extent of their genetic relatedness. Thus, we might 

won’t substitute zeros in I using some measures if dependence; in the simplest case 

we might use coefficients of relatedness. Thus we define such (co)variance structure 

as σA
2A, where A is a square matrix with first two columns/rows for parents, the 

remaining i-2 rows/j-2 columns for their offspring; A[i,j] is the relatedness coefficient 

between i-th and j-th individual. This type of variance structure allows for estimating 

additive genetic variance and narrow-sense haritabilities. In R – there’s currently one 

well tested possibility of fitting animal models – the MCMCglmm package – and given its 

versatility I wouldn’t suggest any other. Both glmmPQL and lmer (see Statistical 

Modelling for details) can fit animal models, but it requires some additional steps with 

defining (co)variance structures – which you can avoid in MCMCglmm by simply 

providing your pedigree structure to the function. So unless you want use REML or 

PQL for some special reasons, I recommend using MCMCglmm – especially in case of 

non-gaussian data. 

 We’ll begin with simple, normally distributed data: tarsus length of blue tits. 

> data(BTdata) 

> data(BTped) 

 Look carefully at the structure of BTped file: 

> head(BTped) 

   animal  dam sire 

1 R187557 <NA> <NA> 

2 R187559 <NA> <NA> 

3 R187568 <NA> <NA> 

4 R187518 <NA> <NA> 

5 R187528 <NA> <NA> 

6 R187945 <NA> <NA> 

 

Important thing is that it contains all individuals (parents and offspring) in 

the first columns, their mothers in the second column and its fathers in the third one. 

As you can see – first individuals have no parents assigned – which is obvious as we 

have some clearly defined first generation. 

 Inside the MCMCglmm function we incorporate pedigree data using ped 

argument. The list of random effects must also contain a special effect, with restricted 

name animal: 
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> BTgen <- MCMCglmm(tarsus~sex, random=~animal+fosternest, 

+ ped=BTped, data=BTdata, verbose=F) 

Warning message: 

In MCMCglmm(tarsus ~ sex, random = ~animal + fosternest, ped = BTped,  : 

  some combinations in animal do not exist and 212 missing records have been generated 

 

Note that we did not use any priors – our data are well structured, with no 

apparent imbalance and MCMCglmm can handle this analysis with its internally default 

priors. Let’s see the results for random effects, mainly the genetic effect: 

> posterior.mode(BTgen$VCV) 

    animal fosternest      units  

 0.4542497  0.0824894  0.3676182  

> HPDinterval(BTgen$VCV) 

                 lower     upper 

animal     0.286807024 0.6328057 

fosternest 0.008939443 0.1284861 

units      0.232745745 0.4435488 

attr(,"Probability") 

[1] 0.95 

> plot(BTgen$VCV) 
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Fig 28: Random effects form an animal model 

As you can see – animal explains a significant proportion of variance: its posterior 

distribution lies well over the zero value. But the strict test of its significance can be 

obtained only by using DIC: 

> BTgen$DIC 

[1] 1840.246 

> BTnogen$DIC 

[1] 2122.019 

 

The DIC value for the genetic model is lower and thus – animal explains a 

significant proportion of variance in tarsi. With this information we can easily proceed 

to calculation of heritabilities. It simply requires adequate manipulation of posterior 

distributions. Note, that here it’s important to provide correct column numbers for 

successive random effects: 
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> h2tar <- BTgen$VCV[,1]/(BTgen$VCV[,1]+BTgen$VCV[,2]+BTgen$VCV[,3]) 

> posterior.mode(h2tar) 

     var1  

0.5641558  

> HPDinterval(h2tar) 

         lower    upper 

var1 0.3594623 0.680278 

attr(,"Probability") 

[1] 0.95 

 

 Another genetic parameter of interest is genetic correlation. We can easily 

estimate it using the same pedigree data – the only change is the use of appropriate 

(co)variance functions and extension of our univariate model to a bivariate one. If – 

for univariate model – the (co)variance structure is σR
2I, in the bivariate case it will be 

V⊗I where V is a m×m square matrix (with m being the number of response 

variables): 

 

Once again, for the estimation of genetic correlations we define an additive genetic 

effect a~ . Here essential is that default priors are univariate. Thus, to 

proceed with the analysis we have to define m-variate priors (most often it will be just 

a square diagonal matrix, hence providing variances equal to one and covariances 

equal to zero). Remember to set the belief parameter to m-1+0.001 to obtain least 

informative but still proper prior (but see Hadfield (2010b) on more specific 

indication as to how to use belief parameters in complex covariance structures): 

 

 

> prBT <- list(R=list(V=diag(2),n=1.001), 

+ G=list(G1=list(V=diag(2),n=1.001), 

+ G2=list(V=diag(2),n=1.001))) 

 

Note, that we should have two elements in the G-structure because we have two 

random factors beside the residual (R-structure). 

 Calling the MCMCglmm – remember to deal with several things: (i) for each 

random effect decide whether to fix trait-specific variances or just single variance for 

pooled trait values; most often the former would be biologically more relevant and 

correct; (ii) decide whether to fit random effect covariances between traits or fix them 

to zeros; here you should use either idh() or us() variance functions, the former 

assuming zero covariance, the latter estimating its precise value(s) – see below; (iii) 

remember to use rcov argument to define appropriate residual (co)variance 
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structure; remember that if each individual was measured only in one trait – residual 

covariance cannot be estimated and should be fixed at zero (which is common when 

estimatin cross-sex rG or analysis genotype-by-environment interaction); still – you 

should fit residuals as two trait-specific variances to allow for differences in σe
2 

between traits; (iv) finally, use cbind() to pass both response variables to MCMCglmm. 

Below we’ll look at the genetic correlation between tarsus length and back colour in 

blue tits: 

> BTgenr <- MCMCglmm(cbind(tarsus,back)~sex, 

+ random=~us(trait):animal+us(trait):fosternest, 

+ rcov=~us(trait):units, data=BTdata, ped=BTped, 

+ verbose=F, nitt=50000, thin=100, burnin=10000, 

+ prior=prBT, family=c('gaussian','gaussian')) 

Warning message: 

In MCMCglmm(cbind(tarsus, back) ~ sex, random = ~us(trait):animal +  : 

  some combinations in us(trait):animal do not exist and 212 missing records have been 

generated 

 

Since genetic covariance isn’t constrained by zero lower boundary it’s test using 

confidence interval will be valid. Alternatively me might use DIC to compare our 

model with the in which we define animal as idh(trait):animal, hence preventing 

covariance from being estimated. Here we’ll proceed with confidence-based test: 

> HPDinterval(BTgenr$VCV) 

                               lower      upper 

tarsus:tarsus.animal      0.28878224 0.66357759 

back:tarsus.animal       -0.20459648 0.01906264 

tarsus:back.animal       -0.20459648 0.01906264 

back:back.animal          0.09297079 0.31168575 

tarsus:tarsus.fosternest  0.07671264 0.20046810 

back:tarsus.fosternest   -0.00864343 0.09907748 

tarsus:back.fosternest   -0.00864343 0.09907748 

back:back.fosternest      0.08682076 0.22635957 

tarsus:tarsus.units       0.25140748 0.47979075 

back:tarsus.units        -0.10522497 0.05454153 

tarsus:back.units        -0.10522497 0.05454153 

back:back.units           0.63802316 0.85200243 

attr(,"Probability") 

[1] 0.95 

> posterior.mode(BTgenr$VCV) 

    tarsus:tarsus.animal       back:tarsus.animal  

              0.41552815              -0.05264475  

      tarsus:back.animal         back:back.animal  

             -0.05264475               0.17940797  

tarsus:tarsus.fosternest   back:tarsus.fosternest  

              0.11540324               0.04211067  

  tarsus:back.fosternest     back:back.fosternest  

              0.04211067               0.13240551  

     tarsus:tarsus.units        back:tarsus.units  

              0.34843877              -0.03127438  

       tarsus:back.units          back:back.units  
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             -0.03127438               0.74120317 

 

Genetic covariance for analysed traits (tarsus:back.animal or 

back:tarsus.animal) is negative and its confidence interval does overlap zero. 

Thus, we conclude that it is not significantly different from zero and we might as well 

use idh() covariance structure. Check that it’s the case also for other random effects. 

 Calculation of genetic correlation is as straightforward as it was in case of 

heritability. Putting appropriate (co)variance parameters into the formula for rG 

(covariance divided by square root of variances’ product) allows for its calculation. 

We obtain a complete posterior distribution of rG allowing for easy construction of 

confidence intervals and hypothesis testing: 

> posterior.mode(rG) 

     var1  

-0.232888  

 

 

 

> HPDinterval(rG) 

          lower      upper 

var1 -0.6142401 0.06382528 

attr(,"Probability") 

[1] 0.95 

 

Once again, although tarsus and back colour seem to be negatively correlated at the 

genetic level, this correlation is not significantly different from zero. 

Here important thing should be emphasized. In case of different traits, the H0 

should be that rG=0; also, we should always fit bot variances, i.e. use either us() or 

idh(). However, when testing for rG in one trait but in different sexes or 

environments (hence, testing for genotype-by-sex or –environment interactions) we 

should rather test two different hypotheses: H01: rG=1 (as could be expected due to 

shared genetic background of our individuals) and H02: σ1
2= σ2

2. Here, when the 

former fails to be rejected, we could use idh() or us(), but when both are accepted – 

simple univariate specification should be used, assuming equal variances and 

covariance one. Importantly – there’s no simple way of constraining our (co)variance 

structure so that genetic correlations where equal to one; it’s possible by use of sir() 

in so called simultaneity and recursion analysis in MCMCglmm but I’ll not cover this 

here (the problem is due to the character of rG – if it’s equal to zero, covariance is also 

fixed at zero; but for rG=1 – there’s no unique value of covariance satisfying this 

equality and rather it depends on the values of variances). 
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Correlations in non-gaussian data 

Real power of MCMCglmm pops out when dealing with non-normal data. MCMC deals 

with  such data much better than REML – both simulations and mathematical 

considerations confirm that estimates of random effects are much more reliable in 

reasonably designed MCMC analyses. As an example we’ll go through estimating 

genetic effects in two traits: oxidase activity (one of immune system branches) and 

virus resistance (measured as probability of pupation). Data come from an experiment 

on Indian meal moth (Plodia interpunctella) exposed to its specific granulosis virus, 

PiGV (Tidbury & Boots, unpublished data). Several difficulties arise in such data 

(Hadfield 2010b): (i) resistance is measured by probability of pupation (i.e. data 

points are 1 for pupated larvae and 0 for unpupated larvae) and hence follow binomial 

distribution in which residual variance cannot be estimated – it’s a quadratic function 

of the mean; as pointed in the previous chapter, overdispersion often arises in such 

data; (ii) both traits have different distributions (binomial and Gaussian) which is 

difficult to handle in most modelling packages if we’d like to estimate rG; (iii) 

measuring oxidase activity kills an individual thus preventing it from pupating – so 

none can be measured in the same trait (residual covariance cannot be estimated). 

 Measuring genetic effects in our data set won’t require pedigree file – here, 

each individual has assigned family from which it comes from. In this case individuals 

are full-sibs, sharing 50% of their genes. Multiplying estimates of proportion of family 

variance in the overall variance should thus give us approximate estimation of 

heritability – although it will be broad-sense heritability since we cannot be sure that 

– excluding additive genetic effects - no other factors influence variability among 

families. However, since in binomial data residual variance cannot be estimated, 

family effects will constitute the only source of variation in random effects. Described 

way of calculating H2 will be possible only for oxidase-trait. Try fitting such model by 

yourself. 

We can however look at some approximation of genetic effects, as expressed 

by family effect. Let’s start with simple estimation of family effect in pupated/not-

pupated trait: 

 

> data(PlodiaPO) 

> data(PlodiaR) 

> data(PlodiaPR) 

> plobin <- MCMCglmm(cbind(Pupated,Infected)~1, 

+ family="multinomial2", data=PlodiaR, verbose=F) 
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As mentioned before – residual variance cannot be estimated here. Moreover 

– since data are counts in families, family effects would be confounded with residuals. 

Thus we’ve decided to exclude FSfamily from analyses. Obviously (recall our models 

in the previous chapter for Poisson data) this will cause overdispersion (it will be put 

into units) – and since we know the source of this overdispersion, we can simply take 

residual variance as the estimate of family effect. Plotting this variance shows it’s 

considerable: 

> plot(plobin$VCV) 

 
Fig 29: Residual variance from simple Plodia model 

Here we’ve used multinomial2 as the distribution family. However, we could express 

our data not as counts in families but as 0/1 data for single individuals. In such case 

we would have a special case of binomial data, where only one “object” is sampled in 

every trial (as in PlodiaRB). For such data, family categorical is appropriate: 

> prplob <- list(R=list(V=1,n=0,fix=1),G=list(G1=list(V=1,n=0.001))) 

> plocat <- MCMCglmm(Pupated~1, random=~FSfamily, 

+ family="categorical", data=PlodiaRB, prior=prplob,verbose=F) 

 

Here we can estimate separately FSfamily – now it won’t be confounded with 

residuals (we have several individuals in each family). However, we still cannot 

estimate residual variance. Thus, we are fixing this variance using fix in our prior. 

Try exploring the results on your own. 
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 As for family-level correlation between two traits we’ve considered so far – it 

should now be quite simple. We should remember to use proper distribution. First 

however, we should merge the data on oxidase activity and pupation together by 

generating for all individuals that were measured in one trait NA – remember they 

cannot be measured in both traits: 

> PlodiaPO$ID <- 1:dim(PlodiaPO)[1] 

> PlodiaRB$ID <- dim(PlodiaPO)[1]+1:dim(PlodiaRB)[1] 

> PlodiaRBPO <- merge(PlodiaPO,PlodiaRB,all=T) 

 

We should use prior that will be bivariate (2×2 square matrices) and that will fix 

proper residual variances (Hadfield 2010b): 

> prplor <- list(R=list(V=diag(2),n=0,fix=1), 

+ G=list(G1=list(V=diag(2),n=1.001))) 

> plorg <- MCMCglmm(cbind(Pupated,PO)~trait-1, 

+ random=~us(trait):FSfamily, rcov=~idh(trait):units, 

+ family=c("categorical","gaussian"),data=PlodiaRBPO, 

+ prior=prplor, verbose=F) 

> rG <- plorg$VCV[,2]/sqrt(plorg$VCV[,1]*plorg$VCV[,4]) 

> plot(rG) 

 
Fig 30: Family-level correlation in Plodia analysis 

It seems that – at the family level – both traits are not correlated. 
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Part 7 ~ (Very brief) introduction to 

multivariate methods 

Multivariate statistics serves as a tool for exploring structures in your data. It does not 

test any particular hypotheses – it rather lets you look into your data for patterns and 

structuring. It is important to use multivariate statistical methods described here only 

when you know exactly what you’re doing. It is tempting to put your data into some 

complex algorithms and get some tricky outputs. But only when you know the aim of 

your analyses you will be able to extract the most of them. 

Principal Component Analysis 

PCA is a way of seeking for correlations in explanatory variables. It is designed to look 

for a set of standardized orthogonal (independent) linear combinations of the 

variables that explain all the variation in our data set. In other words, all variation in 

our predictors is turned into a set of n (n – number of variables) principal 

components. Most often first two-three components explain most of the variation. 

Here we’ll try to extract variation components from an experiment where on 89 plots 

54 plants were quantitatively examined (see Crawley 2010). Before doing PCA we 

must remove several continuous variables not associated with these species 

measurements: 

> gatdane <- read.table(“pgfull.txt”,head=T) 

> names(gatdane) 

 [1] "AC"     "AE"     "AM"     "AO"     "AP"     "AR”     "AS"     "AU"      

 [9] "BH"     "BM"     "CC"     "CF"     "CM"     "CN"     "CX"     "CY"      

[17] "DC"     "DG"     "ER"     "FM"     "FP"     "FR"     "GV"     "HI"      

[25] "HL"     "HP"     "HS"     "HR"     "KA"     "LA"     "LC"     "LH"      

[33] "LM"     "LO"     "LP"     "OR"     "PL"     "PP"     "PS"     "PT"      

[41] "QR"     "RA"     "RB"     "RC"     "SG"     "SM"     "SO"     "TF"      

[49] "TG"     "TO"     "TP"     "TR"     "VC"     "VK"     "plot"   "lime"    

[57] "species" "hay"     "pH"      

> gat<-gatdane[,1:54] 

 

We then use the whole dataset as an input to PCA. Here we have to scale our data to 

equalize variances in different predictors: 

> pcagat <- prcomp(gat,scale=T) 

> summary(pcagat) 

Importance of components: 

                         PC1   PC2    PC3   PC4    PC5    PC6 
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Standard deviation     3.005 2.336 1.9317 1.786 1.7330 1.5119 

Proportion of Variance 0.167 0.101 0.0691 0.059 0.0556 0.0423 

Cumulative Proportion  0.167 0.268 0.3373 0.396 0.4520 0.4943 

                          PC7    PC8    PC9  PC10   PC11   PC12 

Standard deviation     1.5088 1.3759 1.3244 1.273 1.2195 1.1979 

Proportion of Variance 0.0422 0.0351 0.0325 0.030 0.0275 0.0266 

Cumulative Proportion  0.5365 0.5716 0.6040 0.634 0.6616 0.6882 

                         PC13   PC14   PC15   PC16   PC17   PC18 

Standard deviation     1.1723 1.1355 1.0931 1.0678 1.0057 0.9550 

Proportion of Variance 0.0254 0.0239 0.0221 0.0211 0.0187 0.0169 

Cumulative Proportion  0.7136 0.7375 0.7596 0.7807 0.7995 0.8164 

                         PC19   PC20   PC21   PC22   PC23   PC24 

Standard deviation     0.9185 0.8947 0.8644 0.8497 0.7690 0.7513 

Proportion of Variance 0.0156 0.0148 0.0138 0.0134 0.0109 0.0104 

Cumulative Proportion  0.8320 0.8468 0.8606 0.8740 0.8850 0.8954 

                         PC25    PC26    PC27    PC28    PC29 

Standard deviation     0.7419 0.70653 0.69475 0.67325 0.62565 

Proportion of Variance 0.0102 0.00924 0.00894 0.00839 0.00725 

Cumulative Proportion  0.9056 0.91485 0.92379 0.93218 0.93943 

                          PC30    PC31    PC32    PC33    PC34 

Standard deviation     0.56800 0.56269 0.53857 0.52670 0.49524 

Proportion of Variance 0.00597 0.00586 0.00537 0.00514 0.00454 

Cumulative Proportion  0.94540 0.95127 0.95664 0.96177 0.96632 

                          PC35    PC36    PC37  PC38    PC39 

Standard deviation     0.48706 0.46638 0.44471 0.402 0.37661 

Proportion of Variance 0.00439 0.00403 0.00366 0.003 0.00263 

Cumulative Proportion  0.97071 0.97474 0.97840 0.981 0.98403 

                          PC40    PC41    PC42    PC43    PC44 

Standard deviation     0.35794 0.34381 0.31452 0.29639 0.26849 

Proportion of Variance 0.00237 0.00219 0.00183 0.00163 0.00133 

Cumulative Proportion  0.98640 0.98859 0.99042 0.99205 0.99338 

[clipped…] 

 

First PC explains over 16% of total variability in our predictors. Next one 

explains over 10%.  To see relative contributions you can use so called cliff-plot 

(consecutive bars indicate percentages of total variance explained by respective PCs): 

 
> plot(pcagat) 
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Fig 31: Cliff-plot 

An usual way of expressing PCA analysis is a biplot. Here, each explanatory 

variables is represented by an arrow on the plane (or in the space) built on several 

(usually two – PC1 and PC2 – and thus plane) components. Lengths and directions of 

arrows indicate the magnitude and sign of contribution of each predictor (so called 

load) to the considered PCs: 

> biplot(pcagat) 
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Fig 32: A biplot 

Here, for instance, species AP, AE and HS have large, positive influence on the 

first (x-axis) PC. You can actually see how this “new” predictor (PC1) correlates with 

our response variables, e.g. with hay mass: 

> plot(predict(pcagat)[,1],gatdane$hay,xlab="PC1",ylab="hay") 
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Fig 33: Using PC in further analyses 

 

Factor analysis 

Sometimes you’re not interested in building some artificial variables but rather want 

to see how your measured variables contribute to some broader, unmeasured (or 

unmeasurable) variables, such as intelligence, fitness etc. Here you specify how many 

compound variables you’d like to have (and these are called factors). Let’s analyse the 

same dataset, this time we’ll aim at searching for eight factor variables: 

> factanal(gat,8) 

 

Call: 

factanal(x = gat, factors = 8) 

 

Uniquenesses: 

   AC    AE    AM    AO    AP    AR    AS    AU    BH    BM    CC  

0.638 0.086 0.641 0.796 0.197 0.938 0.374 0.005 0.852 0.266 0.056  

   CF    CM    CN    CX    CY    DC    DG    ER    FM    FP    FR  

0.574 0.786 0.579 0.549 0.733 0.837 0.408 0.072 0.956 0.371 0.815  

   GV    HI    HL    HP    HS    HR    KA    LA    LC    LH    LM  

0.971 0.827 0.921 0.218 0.332 0.915 0.319 0.305 0.349 0.333 0.927  

   LO    LP    OR    PL    PP    PS    PT    QR    RA    RB    RC  
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0.121 0.403 0.005 0.286 0.606 0.336 0.401 0.913 0.491 0.005 0.754  

   SG    SM    SO    TF    TG    TO    TP    TR    VC    VK  

0.341 0.212 0.825 0.428 0.476 0.469 0.309 0.611 0.651 0.170  

 

Loadings: 

   Factor1 Factor2 Factor3 Factor4 Factor5 Factor6 Factor7 Factor8 

AC -0.512  -0.268                           0.121                  

AE  0.925  -0.107          -0.146          -0.118                  

AM -0.206   0.413   0.213           0.163   0.115   0.153   0.186  

AO -0.312  -0.196  -0.151  -0.105          -0.148  -0.102          

AP  0.827  -0.173  -0.195  -0.167          -0.123                  

AR          0.150           0.111                   0.127          

AS  0.778                                                          

AU                                                          0.996  

BH  0.380                                                          

BM -0.116   0.292           0.695                   0.380          

CC -0.152                   0.159           0.943                  

CF          0.539                   0.342                          

CM                  0.434  -0.110                                  

CN -0.276   0.143                           0.541   0.147          

CX                          0.628           0.169   0.146          

CY -0.211          -0.162   0.340                   0.270          

DC         -0.125                           0.372                  

DG  0.738                  -0.127           0.145                  

ER                                  0.960                          

FM -0.108                                   0.133                  

FP  0.245   0.226           0.478   0.493          -0.176          

FR -0.386          -0.144                                          

GV -0.134                                                          

HI -0.202  -0.129  -0.163   0.182                   0.216          

HL         -0.157          -0.127          -0.139                  

HP -0.155   0.832                                   0.240          

HS  0.746  -0.102   0.257  -0.152                                  

HR -0.155  -0.107  -0.122   0.101                   0.150          

KA -0.167   0.774  -0.169   0.139                                  

LA                                          0.829                  

LC -0.306   0.378  -0.125   0.529                           0.328  

LH -0.256   0.556  -0.132   0.421           0.223   0.195          

LM                                  0.112   0.221                  

LO -0.129   0.432           0.781                   0.251          

LP  0.115           0.745                                          

OR                                                          0.996  

PL          0.369   0.675           0.337                          

PP  0.527           0.226  -0.167          -0.175                  

PS -0.212   0.301  -0.130   0.681           0.150   0.158          

PT  0.741                  -0.100   0.150  -0.105                  

QR -0.194  -0.135                                                  

RA  0.195   0.227   0.578           0.205  -0.166  -0.107          

RB -0.122   0.158           0.272                   0.934          

RC  0.361                  -0.198          -0.176  -0.152          

SG                                  0.806                          

SM          0.388                                   0.787          

SO                 -0.100   0.386                                  

TF          0.702   0.260                                          

TG  0.141           0.583  -0.110           0.367   0.107          

TO  0.418           0.567  -0.158                                  

TP                  0.818                                          

TR          0.141   0.306   0.238                   0.458          

VC          0.403   0.246   0.309          -0.169                  
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VK                                  0.909                          

 

               Factor1 Factor2 Factor3 Factor4 Factor5 Factor6 

SS loadings      5.840   3.991   3.577   3.540   3.028   2.644 

Proportion Var   0.108   0.074   0.066   0.066   0.056   0.049 

Cumulative Var   0.108   0.182   0.248   0.314   0.370   0.419 

               Factor7 Factor8 

SS loadings      2.427   2.198 

Proportion Var   0.045   0.041 

Cumulative Var   0.464   0.505 

 

Test of the hypothesis that 8 factors are sufficient. 

The chi square statistic is 1675.57 on 1027 degrees of freedom. 

The p-value is 5.92e-34 

 

Although this output seems complex, you can easily see that, for example, AE, AP, AS 

have positive contribution to the first factor, and AC, AO, FR have negative 

contributions; take character of these species, the first factor serves as a measure for 

the type of grassland (Crawley, 2010). Other factors also have clear biological 

interpretations (see commentary during the class). Remember that the number of 

parameters estimated (loadings for factors from different predictors) is 54 in factor 

analysis (the number of variables) and not 89 (the number of cases) as in PCA. 

 

Cluster analysis 

In cluster analysis the task is too look for any structuring in our data. We can look for 

clusters of similar objects using several methods – mainly, we can either build our 

structure starting from single individuals or divide all observations among groups. 

The simplest method works by fitting specified number of groups in our data in such 

way that the sum of squared Euclidean distances from the centres of these groups is 

minimized inside and across all groups. Well analyse a sample data where we have 

two variables and wish to see if they’re structured in their 2-dimendional data space. 

As comparison, we’ll look at actual structuring of these data indicated in the group 

column: 

> klastr<-read.table("kmeansdata.txt", sep="\t", head=T) 

> par(mfrow=c(2,2)) 

> with(klastr,plot(x,y,pch=16)) 

> with(klastr,plot(x,y,pch=16,col=group)) 

> klmod <- kmeans(klastr[,-3],6) 

> with(klastr,plot(x,y,pch=16,col=klmod[[1]])) 

> klmod <- kmeans(klastr[,-3],4) 

> with(klastr,plot(x,y,pch=16,col=klmod[[1]])) 

> par(mfrow=c(1,1)) 
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Fig 34: Raw data (upper left), correct clustering (upper right)  

and two estimated clustering patterns (lower) 

Here, we’ve plotted two plots for original data, one monochromatic, and one with a 

priori groups indicated. Two other plots are based on structuring as inferred from 

kmeans function for 4 and 6 clusters predefined. As you can see, structuring is 

apparent but several mistakes have been made. We can actually look at the precision 

by comparing structuring we know with this inferred in R: 

> klmod <- kmeans(klastr[,-3],6) 

> table(klmod[[1]],klastr$group) 

    

     1  2  3  4  5  6 

  1  0  8  0  0  5  0 

  2  0  0  0  0  0 24 

  3 20  0  0 17  0  0 

  4  0  0 25  1  0  0 

  5  0  0  0  2 25  0 

  6  0 17  0  0  0  1 

 

Now it’s obvious that there are no mistakes in the first cluster (all 20 objects were 

correctly classified in it by classifying function) but for instance 5 objects from original 

5th cluster were assigned to the 1st cluster (look at the 5th column). In general, this 
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method may not be precise, especially when one does not have any hints as to how 

many clusters to specify. 

It’s common to use clustering in taxonomic analyses. Here we’ll try to assess 

usefulness of several morphological features in separating measured individuals in 

several taxa (Crawley, 2010). Here, we’re in a convenient situation since we know we 

should have four taxa – hence, we know how many clusters we should specify. 

> taxa<-read.table("taxon.txt",head=T) 

> names(taxa) 

[1] "Petals"    "Internode" "Sepal"     "Bract"     "Petiole"   

[6] "Leaf"      "Fruit"     

> pairs(taxa) 

 

Looking at the pairwise correlation matrix (Fig. 34) indicates that at least two 

traits (Sepals and Petioles) should be useful in separating taxa. Let’s see how 

clustering works here. We know, that in our data-frame there are 30 taxa and they’re 

arranged one over another so we have consecutive 30s of species’ data. It will allow us 

to look at the precision of this method: 

> taxakl <- kmeans(taxa,4) 

> taxateo <- rep(c(1,2,3,4),each=30) 

> taxateo 

  [1] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 

 [32] 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 3 3 

 [63] 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 4 4 4 

 [94] 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 

> table(taxakl[[1]],taxateo) 

   taxateo 

     1  2  3  4 

  1  9  1  8 10 

  2  0 13  5  0 

  3  2 11 10 19 

  4 19  5  7  1 
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Fig 35: Pair-wise scatter plots for morphological traits 

Although clustering works, it is fairly accurate. This would look even worse if we did 

not have the number of candidate taxa and used some other guesses. Is it any way 

around? Actually – there is and it’s called regression trees. Let’s look at this from the 

opposite end – it is when we have the right classification of our taxa (Crawley 2010; 

we’ll use alternative dataset here): 

> taxa<-read.table("taxonomy.txt",head=T) 

> modkey1 <- tree(Taxon~.,taxa) 

> plot(modkey1) 

> text(modkey1) 
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Fig 36: Regression tree for morphological clustering off species 

As you can see – our 4 taxa can be fairly separated using several 

morphological features – and more important, we could build a simple dichotomous 

key for these plants. Actually, the raw form of such key can be obtained using built-in 

printing function: 

> print(modkey1) 

node), split, n, deviance, yval, (yprob) 

      * denotes terminal node 

 

1) root 120 332.70 I ( 0.2500 0.2500 0.2500 0.2500 )   

  2) Sepal < 3.53232 90 197.80 I ( 0.3333 0.3333 0.3333 0.0000 )   

    4) Leaf < 2.00426 60  83.18 I ( 0.5000 0.5000 0.0000 0.0000 )   

      8) Petiole < 9.91246 30   0.00 II ( 0.0000 1.0000 0.0000 0.0000 ) * 

      9) Petiole > 9.91246 30   0.00 I ( 1.0000 0.0000 0.0000 0.0000 ) * 

    5) Leaf > 2.00426 30   0.00 III ( 0.0000 0.0000 1.0000 0.0000 ) * 

  3) Sepal > 3.53232 30   0.00 IV ( 0.0000 0.0000 0.0000 1.0000 ) * 
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We can also use some useful feature of tree models to visualize partitioning of our 

traits in some phase-space of candidate traits (adapted from Crawley, 2010). Here 

we’ll depict our taxa in the 2D phase-space of two traits (most important ones) – Sepal 

and Leaf: 

> modkey2 <- tree(Taxon~Sepal+Leaf,taxa) 

> partition.tree(modkey2) 

> attach(taxa) 

> label<-ifelse(Taxon=="I","a",ifelse(Taxon=="II","b", 

+ ifelse(Taxon=="II","c","d"))) 

> text(Sepal,Leaf,label) 

 

 
Fig 37: Phase-space for two most efficient separating traits 

What we did here is we built a tree-model in a two-dimensional space of two 

trait-values and depicted our data in this space by “clusters” for each taxon (Crawley 

2010). Additionally, we labelled each point with a letter to visualize how well our data 

fit this clustering. You can see that it is almost perfect separation of 3rd and 4th taxa, 

but 1st and 2nd are mixed. It’s reasonable since they’re separated by the Petiole 

lengths. Now – imagine running the same tree model in reverse, without prior 

knowledge of taxa. It would of course require some more attention and inspection of 
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results but eventually you would find your way to correct traits that separate your 

data into taxa. 

 

Hierarchical clustering 

You’ve probably encountered pretty trees in hundreds of scientific papers. They 

depicted different kinds of hierarchical dependencies – and had in common one thing: 

they depicted in a hierarchical manner growing degree of similarity between some 

units as we climb up the hierarchy. Hierarchical clustering works by using some 

measures of geometric distance to cluster data units (individuals, species, etc.) into 

some more general units. Generalising up and up we get tree-like structure describing 

patterning in our data. 

 In R there are several “treeing” functions. Here we’ll use the simplest one and 

analyse the data on plant communities you’ve encountered in PCA and FA (first two 

subchapters). To be able to effectively analyse those data we will first extract some 

labels identifying all units (plots) uniquely. Then, using our 54 predictors variables, 

we’ll calculate pairwise distances between all possible cases (plots). 

 

 

> etyk <- paste(gatdane$plot,letters[gatdane$lime],sep="") 

> etyk 

 [1] "1a"    "1b"    "1c"    "1d"    "2.1a"  "2.1b"  "2.1c"  

 [8] "2.1d"  "3a"    "3b"    "3c"    "3d"    "4.1a"  "4.1b"  

[15] "4.1c"  "4.1d"  "4.2a"  "4.2b"  "4.2c"  "4.2d"  "6a"    

[22] "6b"    "7a"    "7b"    "7c"    "7d"    "8a"    "8b"    

[29] "8c"    "8d"    "9.1a"  "9.1b"  "9.1c"  "9.1d"  "9.2a"  

[36] "9.2b"  "9.2c"  "9.2d"  "10a"   "10b"   "10c"   "10d"   

[43] "11.1a" "11.1b" "11.1c" "11.1d" "11.2a" "11.2b" "11.2c" 

[50] "11.2d" "12a"   "12b"   "12c"   "12d"   "13.2a" "13.2b" 

[57] "13.2c" "13.2d" "14.1a" "14.1b" "14.1c" "14.1d" "14.2a" 

[64] "14.2b" "14.2c" "14.2d" "15a"   "15b"   "15c"   "15d"   

[71] "16a"   "16b"   "16c"   "16d"   "17a"   "17b"   "17c"   

[78] "17d"   "18.1a" "18.1b" "18.1c" "18.1d" "18.2a" "19.1c" 

[85] "19.2a" "19.3b" "20.1c" "20.2a" "20.3b" 

> drzewo <- hclust(dist(gatdane[,1:54])) 

> plot(drzewo,labels=etyk) 

 

Looking carefully through the tree (next page) and the data – you can see that this 

analysis clustered our data in such a way that similar plant communities were placed 

together, as explained in more detail during the class. 
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Note 

Topics presented below are selected and adapted from the workshop on advanced 

methods in mixed models implemented in R, that took place in January 2011 in the 

Evolutionary Biology Centre, University of Uppsala. Complete data files and complete 

scripts containing relevant R code are available on the website of this book (see 

Preface). Please note, that these subjects are more advanced than problems in the first 

part of this book. Also, the style of the remaining sections is somehow different, with 

less off-code narration and more inline comments (indicated by the leading # sign). In 

order to facilitate using these notes code blocks are identified with their unique 

numbers, which are the same as blocks’ IDs in the R scripts available online. 

 In case you have executed library(NAME) and received error message saying 

that you have not the required package, remember to (re)install it using 

install.packages(NAME). 
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Part A ~ Likelihood and Bayesian 

statistics 

Seeing the invisible – likelihoods and posteriors 

Maximum likelihood estimators are common in classical statistics. For instance, 

arithmetic mean, OLS estimates of regression coefficients – all are in fact estimators 

that maximize the likelihood of data given particular values of parameters, i.e. 

max(P(y|par)). In general situations as considered here this likelihood is proportional 

to the product of probability densities of the data given particular values of 

parameters: 

L(par|y) ~ Πi P(y|pari) 

 In this part we’ll play with simple simulated Gaussian data and see how 

simple maximum likelihood estimation works. We’ll learn how to use optimizing 

functions of R (which some of you may find useful in other applications) and how to 

produce multivariate graphs of likelihood surfaces. 

First – we’ll simulate simple normal data (10 observations) and see how do 

they look like in terms of the distributions they were taken from (after Hadfield 

2010b). Likelihoods may be tricky and as you’ll see – the likelihood of our data may be 

higher for different (!) parameters than those we’ll use to simulate them. Note that 

since our data are sampled randomly you may obtain entirely different results that 

those presented below. 

 
> ###code block 1 

 

> dataG <- data.frame(y = rnorm(10,mean=0,sd=sqrt(1))) 

> dataG$y 

 [1] -0.2079101 -1.1445615 -0.0656215 -0.6294617  0.5422668 

 [6]  0.7025364  0.7627269  0.1905778  1.6687900  2.0852642 

 

> yscale <- seq(-3,3,0.1) #possible values of y for the plot 

> Prob<-dnorm(yscale,mean=0,sd=sqrt(1)) #pdf 

> plot(Prob~yscale,type="l") 

> Prob.y <- dnorm(dataG$y, mean=0, sd=sqrt(1)) 

> points(Prob.y~dataG$y) 

 

> L <- prod(Prob.y) #likelihood 

> L 
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[1] 5.94403e-07 

> 

> Lalt <- prod(dnorm(dataG$y,mean=0,sd=sqrt(0.5))) 

> Lalt 

[1] 1.107162e-07 

 

 

> plot(dnorm(yscale,0,sqrt(0.5))~yscale,type="l") 

> lines(Prob~yscale,col="red") 

> points(Prob.y~dataG$y,col="red") 

> points(dnorm(dataG$y,0,sqrt(0.5))~dataG$y) 

 

 
Fig 38: Sampled data superimposed on two normal distributions; 

the red one is the true one 

 As you can see – the likelihood of our data is higher under different set of 

parameters and it’s apparent from the plot (3 points of the black curve, generated 

using parameters different than those used for generating data, lie over the red, 

theoretically proper, curve). In order to fully understand what’s happening we should 

evaluate the likelihood on the grid of possible parameters. Here we’ll use simple loop 
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to iterate through the space of our parameters (mean and variance) to calculate 

possible values of L and then we’ll plot them as a flattened perspective plot (contours). 

Be aware that each of you has slightly different values in you simulated data (in 

rnorm ‘r’ means random!) and you’ll probably have to rescale your plots so that they 

could contain whole likelihood surface (to do this just play with the first two 

parameters in two commands in the frame below): 

> ###code block 2 

>  

> x=seq(-1,1,0.05) 

> y=seq(0,2,0.05) 

> z=matrix(numeric(length(x)*length(y)),c(length(x),length(y))) 

>  

> for (i in 1:length(x)) { 

+  

+ for (j in 1:length(y)){ 

+  

+ z[i,j]=prod(dnorm(dataG$y,mean=x[i],sd=sqrt(y[j]))) 

+ } 

+ } 

>  

> z<-z/max(z) 

> contour(x,y,z,nlevels=10,xlab="mean",ylab="variance") 
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Fig 39: Contour representation of the likelihhod surface 

Importantly we don’t have to rely on visual inspection looking for ML 

estimator. We can use R built-in features designed for searching for functions maxima 

and minima. In such case you should define your maximized/minimized function (in 

our case (loglik) it will be the likelihood which is the product – or, on the log scale, 

the sum – of (logged) probability densities). In the optimizing routine you have to 

specify starting parameters (which may be our assumed parameters of the 

distribution; these will be coordinates of the space in which optimization will be done 

– you can locate them as the first argument in optim) – they have to be of the same 

number as parameters in the optimized function; you also have to provide all 

variables that are in the optimized function (here it’s only y). Other arguments are: fn 

(defines the optimized function) and control (provides control parameters, such as 

fnscale (it multiplies the minimized function by -1, effectively maximizing it) or 

reltol (it sets the threshold for stopping the optimizing routine and deciding that the 

actual optimum has been reached). We’ll compare our optimum with the estimates of 

a linear model (which uses REML instead of ML). 
 

> ###code block 3 
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> loglik <- function(pars,y) { 

+ sum(dnorm(y,pars[1],sqrt(pars[2]),log=TRUE)) 

+ } 

>  

> ML <- optim(c(mean=0,v=1),fn=loglik,y=dataG$y, 

+ control=list(fnscale=-1,reltol=1e-16)) 

> ML$par 

     mean         v  

0.3904607 0.8768050  

 

> REML <- glm(y~1,data=dataG) 

> summary(REML) 

 

Call: 

glm(formula = y ~ 1, data = dataG) 

 

Deviance Residuals:  

     Min        1Q    Median        3Q       Max   

-1.53502  -0.56280  -0.02404   0.35722   1.69480   

 

Coefficients: 

            Estimate Std. Error t value Pr(>|t|) 

(Intercept)   0.3905     0.3121   1.251    0.242 

 

(Dispersion parameter for gaussian family taken to be 0.9742278) 

 

    Null deviance: 8.768  on 9  degrees of freedom 

Residual deviance: 8.768  on 9  degrees of freedom 

AIC: 31.064 

 

Number of Fisher Scoring iterations: 2 

 

 

 

> #REML estimator is better (the bias is smaller by  

> #factor of n/n-1) 

> ML$par["v"]*(10/9) 

        v  

0.9742278 

 

Combining likelihood and prior knowledge 

What’s unique for Bayesian analysis is that we consider parameters as random rather 

than fixed and we use some knowledge about these parameters to estimate their 

values. In other words, the posterior probability of observing parameters of a given 

value depends both on the likelihood of the data of given these parameters and our 

prior knowledge about them: 

P(par|y) ~ L(par|y)P(par) ~ P(y|par)P(par) 

 Diverse distributions could be used in the Bayesian framework to define 

priors but in our analyses we’ll use two of them. Priors for fixed effects are defined 

using normal distribution with mean zero and very large (>1e+06) variance, making 

such prior essentially flat and uninformative. For (co)variances we use inverse 
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Wishart distribution (IW) which is slightly problematic for multivariate (co)variance 

structures (and we’ll come back to them later). For simple variances IW is defined by 

two parameters: variance – V and belief parameter – nu. When belief goes to infinity, 

the distribution tends to a mode equal to V. In general the mode of the distribution is 

(V*nu)/nu+2. In R we can model IW using inverse gamma distribution (e.g. function 

dinvgamma) with parameters: shape=nu/2 and scale=nu*V/2). Care is needed 

to ensure that the prior is proper (integrates to one as an ordinary distribution) and 

this condition holds for single variance components when V>0 and nu>0. When nu≤0 

we get improper prior which – although difficult – may be useful (as we’ll see later; 

Hadfield, 2010b). 

 Here we’ll combine our likelihood function with prior densities to see how 

such estimates work compared to ML. First we’ll define function for calculating prior 

probability for given values of parameters, then we’ll combine these with likelihood 

and use to estimate values of the parameters. Since we’re working on the log scale, it’s 

summing and not multiplying that we’ll employ. 

> ###code block 4 

>  

> library(MCMCpack) 

Loading required package: MASS 

## 

## Markov Chain Monte Carlo Package (MCMCpack) 

## 

## Support provided by the U.S. National Science Foundation 

## (Grants SES-0350646 and SES-0350613) 

## 

 

> logprior <- function(pars,priorR,priorB) { 

+ dnorm(pars[1],mean=priorB$mu,sd=sqrt(priorB$V),log=T)+ 

+ log(dinvgamma(pars[2],shape=priorR$nu/2, 

+ scale=(priorR$nu*priorR$V)/2)) 

+ } 

 

> prior <- list(R=list(V=1,nu=0.002),B=list(mu=0,V=1e+08)) 

 

> loglikprior <- function(pars,y,priorR,priorB) { 

+ loglik(pars,y)+logprior(pars,priorR,priorB) 

+ } 

 

> Bayes <- optim(c(mean=0,v=1),fn=loglikprior,y=dataG$y, 

+ priorR=prior$R,priorB=prior$B, 

+ control=list(fnscale=-1,reltol=1e-16)) 

 

> x=seq(-1,1,0.05) 

> y=seq(0,2,0.05) 

> z1=matrix(numeric(length(x)*length(y)),c(length(x),length(y))) 
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> for (i in 1:length(x)) { 

+  

+ for (j in 1:length(y)){ 

+  

+ z1[i,j]=exp(loglikprior(c(x[i],y[j]), 

+ dataG$y,prior$R,prior$B)) 

+ } 

+ } 

 

> #z2<-z1/max(z1) sometimes does not work as NaNs are produced 

> contour(x,y,z,nlevels=10,xlab="mean",ylab="variance") 

> contour(x,y,z1,nlevels=10,xlab="mean",ylab="variance", 

+ add=T,col="red") 

 
Fig 40: Likelihood surface (larger in black) and the same combined with the prior (smaller in red) 

 As you can see – variance estimates using prior are even more downwardly 

biased – which is caused by the fact that simple optimization of the L*prior ignores 

uncertainty of the mean estimate (Hadfield, 2010b). We can however integrate our 
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bivariate distribution along the mean scale to get the posterior for variance, which 

would take uncertainty in mean into account: 

 

Important advantage of MCMC-based methods is that analytically it’s most often 

impossible to get the posterior marginal distribution of a parameter.  
 

> ###code block 5 

 

> contour(x,y,z1,nlevels=10,xlab="mean",ylab="variance", 

+ col="red") 

> library(MCMCglmm) 

> m1 <- MCMCglmm(y~1,data=dataG,prior=prior,thin=1,nitt=30000, 

+ verbose=F) 

> points(cbind(m1$Sol,m1$VCV),pch=".") 
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Fig 41: ML combined with the prior (lines) with the MCMC sample superimposed (points) 

 

 Of course, one would ask how sure we can be that our sample space 

(visualized above) is appropriate and guaranties we’re integrating true distribution 

(i.e. integrating to one using the boundaries of our space)? If we look at the proportion 

of samples from the posterior contained within considered sample space you’ll see it’s 

almost 1. Thus, we can construct the posterior distribution safely over this range (try 

using whole sample from the posterior – such histogram would be impossible to 

interpret). 

> ###code block 6 
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> prop.table(table(m1$Sol > -1 & m1$Sol<1 & m1$VCV<2)) 

 

    FALSE      TRUE  

0.1444815 0.8555185  

> hist(m1$VCV[which(m1$VCV<2)],breaks=30) 

> abline(v=Bayes$par["v"],col="red") #estimates from optimising procedure 

 
Fig 42: Posterior marginal distribution of the variance; line denotes REML estimate of the variance 

 

Let’s go nasty – improper priors 

As I mentioned, sometimes priors are not proper, i.e. they don’t integrate to unity. The 

simplest example is a uniform prior defined over R. It’s not proper since it integrates 

to +∞. Uniform prior would be proper only when defined over the range A=[a,b]⊂R so 

that P(x∊A)(b-a)=1. 

 In case of IW-distributed priors for single variance components they’re 

improper when nu≤0. For nu=0 we get flat prior for variance. This reduces well 
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known Bayesian equation to simple ML estimator: P(par|y)~P(y|par). In other words 

– the joint posterior distribution will be equal to ML estimator but remember – modes 

you’re getting analyzing problems are from marginal distributions, not from the joint 

one. 

We may also define prior that will be non-informative for the variance and 

this could be achieved by setting V=0 and nu=-2. Such prior makes joint posterior to 

deviate from ML estimates but marginal estimates of variance are in agreement with 

REML. 

In general – priors in MCMCglmm lead often to confusion. Several conventions 

exist for defining them. E.g. improper priors can be useful in a way that they allow for 

reducing our problem to simple ML estimator or REML estimator (for marginal 

distributions of parameters). However, improper priors must be used with caution – 

improper prior distribution may lead to improper posterior distribution, which would 

be meaningless from a statistical point of view. The question is – which strategy to 

adopt in defining priors? First of all – use weak priors unless you want to impose some 

(strong) constraints on the variance. In general – having good data, with appropriate 

levels of replication, and sampling populations of random effects accordingly should 

make priors less influential – in other words, when the data contain enough 

information to estimate the parameters, priors should not influence these estimates. 

In case of less informative data you might consider using improper priors, but be 

extremely cautious. From my point of view two approaches are recommended: use 

either priors with V=1 and nu=0.002 or calculate the variance from your data and 

use it (partitioned accordingly with respect to random effects) as values for V. You’ll 

see these approaches in further parts of this workshop. 
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Part B ~ More on Markov Chain methods 

MCMCglmm and lmer – which to choose? 

This is simple: if you have good, well replicated Gaussian data, with lots of information 

on large numbers of random effects’ levels – use lmer. It performs well, but 

remember that significance tests may be a little cumbersome. However, if you want to 

fit categorical random interactions – avoid using lmer. It doesn’t allow for residual 

variances to differ between levels of fixed effect and thus any differences here could 

possibly be confounded with the differences in variances associated with a particular 

random effect. For categorical interactions use MCMCglmm. 

 In case of non-Gaussian data use MCMCglmm – REML methods are not able to 

analytically derive likelihood in such data and work on approximations. If such 

approximations are then used in likelihood-ratio tests – results may not be reliable. 

 Finally – remember that Poisson and binomial data are almost always 

overdispersed. lmer has this famous “quasi” prefix for such distributions that 

should deal with it. However, it doesn’t. MCMCglmm fits overdispersion by default – so 

it’s much better choice. A good alternative is ASReml, which is faster than MCMCglmm 

– but it’s not free which for many people is limiting. And it also works on REML 

estimates which may be problematic in case of “weird” distributions. 

MCMC diagnostics 

MCMCglmm works using randomization so utmost care should be taken to ensure that 

this random sampling actually samples joint posterior distribution of parameters. 

Specifically, you have to check if consecutive samples from the posterior are 

independent from each other. At the beginning they may not be independent as the 

walk through the posterior starts from some values, but then the chain should 

converge and samples should be independent. 

 At first, let’s generate some “artificial” problems by shortening the MCMC 

chain in one of the previous models (on blue tits). We achieve this by setting the 

number of iterations to some low value (nitt=2000). Default burnin=3000, so we 

should lower this value below 2000. We’ll sample every second iteration (thin=2). 

 
> ###code block 12 

 

> library(MCMCglmm); data(BTdata) 

> prior <- list(R=list(V=1,nu=0.002), 

+ G=list(G1=list(V=1,nu=0.002), 
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+ G2=list(V=1,nu=0.002))) 

> m3.bad <- MCMCglmm(tarsus~sex, random=~fosternest+dam,  

+ prior=prior,verbose=F, data=BTdata, nitt=2000,  

+ burnin=500, thin=2) 

> plot(m3.bad$VCV) 

> autocorr(m3.bad$VCV) 

, , fosternest 

 

         fosternest         dam       units 

Lag 0    1.00000000 -0.24455001 -0.10430602 

Lag 2    0.82815231 -0.23892563 -0.10144780 

Lag 10   0.47711854 -0.09162047 -0.09937022 

Lag 20   0.23792851 -0.08204370 -0.09793121 

Lag 100 -0.02210706  0.04458598 -0.04048683 

 

, , dam 

 

 

           fosternest          dam       units 

Lag 0   -0.2445500147  1.000000000 -0.10084968 

Lag 2   -0.2245963939  0.359331075 -0.01494919 

Lag 10  -0.1340634723 -0.019236027  0.01143639 

Lag 20  -0.1250328753 -0.009754384  0.02827148 

Lag 100  0.0009055187 -0.073661071  0.01977242 

 

, , units 

 

          fosternest         dam       units 

Lag 0   -0.104306016 -0.10084968  1.00000000 

Lag 2   -0.094951195 -0.09790104  0.07213249 

Lag 10  -0.036437767 -0.04785507 -0.01063517 

Lag 20  -0.031778578  0.01160051 -0.03949663 

Lag 100 -0.009335712  0.03043995 -0.03858646 

 

 

> m3.good <- MCMCglmm(tarsus~sex, random=~fosternest+dam,  

+ prior=prior,verbose=F, data=BTdata,  

+ nitt=50000, burnin=3000, thin=50) 

> plot(m3.good$VCV) 

> autocorr(m3.good$VCV) 

, , fosternest 

 

            fosternest          dam       units 

Lag 0     1.0000000000 -0.225723765 -0.18379490 

Lag 50    0.0007770752 -0.027699347  0.02414860 

Lag 250   0.0223765238  0.019155326 -0.01651623 

Lag 500  -0.0197449053  0.002413883 -0.02576015 

Lag 2500  0.0043333577  0.019968891  0.04245713 

 

, , dam 

 

          fosternest         dam        units 

Lag 0    -0.22572376  1.00000000 -0.015647709 

Lag 50   -0.06615831  0.01547784  0.029970618 

Lag 250  -0.06405542  0.03430238 -0.001347705 

Lag 500   0.03822892 -0.02795335 -0.015139277 

Lag 2500 -0.02030468  0.07640567  0.014159344 
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, , units 

 

           fosternest          dam       units 

Lag 0    -0.183794898 -0.015647709  1.00000000 

Lag 50   -0.011400580  0.002101844 -0.02310039 

Lag 250  -0.005789198 -0.060701762  0.04574427 

Lag 500  -0.026688031 -0.023276145  0.02380457 

Lag 2500 -0.009362384  0.012835732  0.02213512 

 

> #try below if you don't want to have huge  

> #complex matrix outputs 

> diag(autocorr(m3.good$VCV)[2,,]) 

   fosternest           dam         units  

 0.0007770752  0.0154778375 -0.0231003891 

 

 The first model mixes poorly, and clear trends in time series suggest non-

independence of samples drawn from posterior. Additionally, autocorr indicates 

substantial autocorrelation in random effects of dam and fosternest (in units it’s 

smaller). After extending the chain problems disappear. Chains are in the form of flat 

time series, and autocorrelations are well below 0.05. 

 Finally, there’s one more aspect of MCMC diagnostics: we should not only 

ensure independence of consecutive samples but also make sure that all effects are 

sampled good enough, i.e. samples we based our estimation on are large enough. 
 

> ###code block 12a 

 

> effectiveSize(m3.good$VCV) 

fosternest        dam      units  

  940.0000   816.6073   940.0000 

More on overdispersion – Poisson data 

We have already seen how non-gaussian data can mess up with our conclusions if 

handled incorrectly. Also, we have seen substantial influence of additional variability 

in our data that is not accounted for in the analyses. We have modelled this 

overdispersion of our data removing one of predictor variables, a priori known to 

influence the response. Omitting one variable not only extremely biases estimates but 

also changes deviance to df ratio. In general, if the model fitted is correct, the 

asymptotic distribution of deviance should be proportional do a Chi-squared variable 

with n-p df (roughly speaking number of data minus number of predictors): 

D~χ2(df=n-p). If D>n-p>E[χ2(df=n-p)] it may indicate overdispersion. To be more 

practical, in the presence of overdispersion the ratio of residual deviance to residual df 

will be greater than 1. It’s value approximately tells us about the strength of 

overdispersion. Even using quasipoisson distribution does not change anything – 
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estimates look the same. However, when fitting the same model in MCMCglmm – 

estimates are much better. They’re still biased but much closer to their true values. It 

is because MCMCglmm uses additive model of overdispersion. What does it mean? 

In its usual form linear model I defined like this: y=Xβ+e where e is residual 

(unexplained variance in the response). Taking expectations gives: E[y]=exp(Xβ). 

Exponent indicates, that it’s a Poisson process for which log is the link function. We 

may present this on the scale of the latent variable: l=η which is equivalent to 

log(E[y])= Xβ. However, in the presence of overdispersion, there’s additional variation 

on top of the predicted value and it gives: E[y]=exp(Xβ+e*) or l=η+e*. Now it is not 

entirely true that y~Pois(exp(l)) because there is this additional variation over the 

variability of Poisson process (Hadfield, 2010b). We can actually see these additional 

“residuals” (quotation marks indicate that this residual shows deviation from the 

variance expected by the Poisson process for a given mean). We’ll analyse data on 

traffic accidents in Sweden. Analysis was performed to see if speed limit has some 

effect on the number of accidents, and if there are any year-by-year and day-by-day 

trends. 
 

> ###code block 14 

 

> library(MASS) 

> data(Traffic) 

> Traffic$year<-as.factor(Traffic$year) 

>  

> m4.bad <- glm(y~limit+year+day,family="poisson",data=Traffic) 

> summary(m4.bad) 

 

Call: 

glm(formula = y ~ limit + year + day, family = "poisson", data = Traffic) 

 

Deviance Residuals:  

    Min       1Q   Median       3Q      Max   

-4.1774  -1.4067  -0.4040   0.9725   4.9920   

 

Coefficients: 

              Estimate Std. Error z value Pr(>|z|)     

(Intercept)  3.0467406  0.0372985  81.685  < 2e-16 *** 

limityes    -0.1749337  0.0355784  -4.917 8.79e-07 *** 

year1962    -0.0605503  0.0334364  -1.811   0.0702 .   

day          0.0024164  0.0005964   4.052 5.09e-05 *** 

--- 

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1  

 

(Dispersion parameter for poisson family taken to be 1) 

 

    Null deviance: 625.25  on 183  degrees of freedom 

Residual deviance: 569.25  on 180  degrees of freedom 

AIC: 1467.2 

 

Number of Fisher Scoring iterations: 4 
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> m4.bad$deviance/m4.bad$df.residual 

[1] 3.162493 

> # >3 times greater variation than expected 

 

We can extract information on these residuals – this would require recording 

the behaviour of the latent variable (logged expectation of the response in this case). 

We’ll show how much this additional variation changes Poisson process. 
 

> ###code block 15 

 

> prior <- list(R=list(V=1,nu=0.002)) 

> m4.good <- MCMCglmm(y~limit+year+day,family="poisson",data=Traffic, 

+ prior=prior,verbose=F,pl=T)#pl saves the latent variables 

> lat92 <- m4.good$Liab[,92]#predicted by Poisson process 

> eta92 <- m4.good$Sol[,"(Intercept)"]+m4.good$Sol[,"day"]*92 

> #particular realisation of Poisson process on day 92 in 1961 

> resid92 <- lat92-eta92 

> mean(resid92) 

[1] -0.1240384 

> #this realisation is lower than expected from Poisson process 

 The figure below actually shows all 92 realisations of this estimated Poisson 

process in 1961 without the speed limit. As you can see although the Poisson process 

is one (straight line in the middle, linearized as we use predictions on the link-

function scale, i.e. latent variables), each day randomly deviates from this prediction 

(thin dotted lines scattered around the thick line). One particular realisation (92nd 

day) is depicted using dashed line – it’s the same observation as the one for which we 

have calculated the residual above (Hadfield, 2010b). 
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Fig 43: Graphical illustration of overdispersion (see text) 

 

Overdispersion and random effects 

The distinction between fixed and random effects is sometimes difficult and 

controversial (see the discussion about year effect in countless ecological papers). 

However, this controversy in Bayesian analysis largely vanishes since ALL effects are 

basically random, they just differ in the way we define their variances. For fixed effects 

variances are set as very large, yielding flat priors, whereas for variance components 

we shrink this variance to allow it’s direct estimation (for in random effects it’s 

variance we’re interested in). Let’s see how we can see this equivalence. First we’ll fit 

simple fixed-effect model to our traffic data and obtain predictions for both years 

(Hadfield, 2010b). 

> ###code block 16 

 

> X <- model.matrix(y~limit+year+day,data=Traffic) 

> X[c(1,2,3,91,92,183,184),] 

    (Intercept) limityes year1962 day 

1             1        0        0   1 

2             1        0        0   2 

3             1        0        0   3 

91            1        0        0  91 

92            1        0        0  92 

183           1        1        1  91 

184           1        1        1  92 

> m5.fix <- MCMCglmm(y~limit+year+day,data=Traffic, 

+ verbose=F,family="poisson") 
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> # using default prior 

> #prediction for 1961 and 1962 with no speed limit 

> y61.m5.fix <- m5.fix$Sol[,"(Intercept)"] 

> y62.m5.fix <- m5.fix$Sol[,"(Intercept)"]+m5.fix$Sol[,"year1962"] 

> posterior.mode(y61.m5.fix) 

    var1  

2.974852  

> posterior.mode(y62.m5.fix) 

    var1  

2.915276 

 

Now we redefine model so that year is treated as random effect BUT is associated with 

large variance, so basically it’s the same as fixed effect. Note different method for 

obtaining predictions as in random effects intercept is suppressed by default. 

> ###code block 17 

 

> Z <- model.matrix(~year-1,data=Traffic) 

> Z[c(1,2,3,91,92,183,184),] 

    year1961 year1962 

1          1        0 

2          1        0 

3          1        0 

91         1        0 

92         1        0 

183        0        1 

184        0        1 

> X2 <- model.matrix(y~limit+day,data=Traffic) 

> X2[c(1,2,3,91,92,183,184),] 

    (Intercept) limityes day 

1             1        0   1 

2             1        0   2 

3             1        0   3 

91            1        0  91 

92            1        0  92 

183           1        1  91 

184           1        1  92 

 

 

 

> W<-cbind(X2,Z)#in bayesian statistics we use combined Z nad X matrices 

> W[c(1,2,3,91,92,183,184),] 

    (Intercept) limityes day year1961 year1962 

1             1        0   1        1        0 

2             1        0   2        1        0 

3             1        0   3        1        0 

91            1        0  91        1        0 

92            1        0  92        1        0 

183           1        1  91        0        1 

184           1        1  92        0        1 

 

> prior <- list(R=list(V=1,nu=0.002), 

+ G=list(G1=list(V=1e+08,fix=1))) 

> m5.ran<-MCMCglmm(y~limit+day,random=~year,family="poisson", 
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+ data=Traffic,verbose=F,prior=prior,pr=T)  

> #pr save the posterior of random effects 

> y61.m5.ran <- m5.ran$Sol[,"(Intercept)"]+ 

+ m5.ran$Sol[,"year.1961"] 

> y62.m5.ran <- m5.ran$Sol[,"(Intercept)"]+ 

+ m5.ran$Sol[,"year.1962"] 

 

> #comparing posteriors for year effects from fixed and random effects 

 

> y.fix <- mcmc(cbind(y1961=y61.m5.fix,y1962=y62.m5.fix)) 

> y.ran <- mcmc(cbind(y1961=y61.m5.ran,y1962=y62.m5.ran)) 

> plot(mcmc.list(y.fix,y.ran)) #virtually the same! 

> #black trace is for year as fixed effects 

> #red trace for year as random effect 

> #unfortunately as we have just two levels of year 

> #treating this as random confounds year effects with intercept 
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Fig 44: Treating year as random and fixed effects is the same here! 

 

 

> plot(c(m5.ran$Sol[,"year.1962"]+ 

+ m5.ran$Sol[,"year.1961"])/2,m5.ran$Sol[,"(Intercept)"]) 
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Fig 45: Intercept and year effects are virtually the same  

due to confounding of these two factors 

 

And what if we made a more sensible decision and treated day as random 

effect? We’ll leave day as continuous predictor to see any trends associated with day, 

but also we’ll put categorical variable day as random effect, to account for between 

day variability. Recall that we’ve earlier observed this variability as overdispersed 

residuals in the Poisson process. Accounting for variability in days almost entirely 

removes overdispersion and shrinks residual variance to close to zero. 

> ###code block 18 

 

> Traffic$day<-as.factor(Traffic$day) 

> prior <- list(R=list(V=1,nu=0.002), 

+ G=list(G1=list(V=1,nu=0.002))) 

> m6 <- MCMCglmm(y~limit+year+as.numeric(day),random=~day, 

+ family="poisson", data=Traffic, prior=prior, verbose=F) 

> summary(m6) 
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 Iterations = 12991 

 Thinning interval  = 3001 

 Sample size  = 1000  

 

 DIC: 1166.191  

 

 G-structure:  ~day 

 

    post.mean l-95% CI u-95% CI eff.samp 

day   0.09221  0.06065   0.1296    170.4 

 

 R-structure:  ~units 

 

      post.mean  l-95% CI u-95% CI eff.samp 

units  0.006757 0.0002729  0.01838    49.26 

 

 Location effects: y ~ limit + year + as.numeric(day)  

 

                 post.mean   l-95% CI   u-95% CI eff.samp 

(Intercept)      3.0116915  2.8451222  3.1551507    342.8 

limityes        -0.2495462 -0.3345628 -0.1533956    145.4 

year1962        -0.0377975 -0.1201447  0.0389475    193.7 

as.numeric(day)  0.0024443 -0.0002819  0.0050961    268.4 

                 pMCMC     

(Intercept)     <0.001 *** 

limityes        <0.001 *** 

year1962         0.330     

as.numeric(day)  0.096 .   

--- 

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1  

> plot(m6$VCV) 

> autocorr(m6$VCV) 

, , day 

 

                day       units 

Lag 0    1.00000000 -0.23114258 

Lag 10   0.30761083 -0.20437420 

Lag 50   0.12384555 -0.12673639 

Lag 100  0.06815593 -0.11596727 

Lag 500 -0.02644770  0.04207223 

 

, , units 

 

                day       units 

Lag 0   -0.23114258  1.00000000 

Lag 10  -0.23203677  0.84447766 

Lag 50  -0.17455563  0.53681546 

Lag 100 -0.13089769  0.36073419 

Lag 500  0.02705169 -0.09263029 

 

> #we'll run the model for longer to treat 

> #autocorrelation in residuals 

 

> m6 <- MCMCglmm(y~limit+year+as.numeric(day),random=~day, 

+ family="poisson",data=Traffic,prior=prior,verbose=F, 

+ nitt=100000,burnin=20000,thin=50) 
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> plot(m6$VCV) 

> #traces look better butperhaps improper  

> #or expanded priors would be better 

 
Fig 46: Traces for model with day as random effect 

Binary/categorical data 

Often in biology our data can be expressed as categories, ordered or without any 

numerical value (e.g. colours, sexes, success/failure data). In such cases we should use 

categorical family (or ordinal if our categories are ordered in any way), 

associated with link-functions logit or probit, respectively. Such data can be troubling 

and difficult to analyse. 

 We’re in the best positions if we have binomial data, i.e. we have some units 

and within every unit we count some successes and some failures. Having such data 

makes possible to see if there’s any heterogeneity in those units with respect to 

underlying probabilities associated with the binomial process. Here we’ll generate 

simple binomial data which show such heterogeneity. Note that if in such data only 

intercept is fitted, it indicates heterogeneity as this intercept would be different than 

probabilities in every unit. 

> ###code block 19 

 

> ones <- rbinom(20, size=5, prob=c(0.2,0.8)) 

> zeros <- 5-ones 

> bdata <- rbind(ones,zeros) 
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> bdata<-rbind(bdata,unit=letters[1:20]) 

> bdata<-as.data.frame(t(bdata)) 

 

> prior <- list(R=list(V=1,nu=0.002)) 

 

> m7.bin <- MCMCglmm(cbind(ones,zeros)~1, 

+ data=bdata,family="multinomial2", 

+ prior=prior,verbose=F,nitt=100000, 

+ burnin=20000,thin=50) 

> summary(m7.bin) 

 

 Iterations = 99951 

 Thinning interval  = 20001 

 Sample size  = 1600  

 

 DIC: 193.2368  

 

 R-structure:  ~units 

 

      post.mean  l-95% CI u-95% CI eff.samp 

units    0.4696 0.0003961    1.537    705.2 

 

 Location effects: cbind(ones, zeros) ~ 1  

 

            post.mean l-95% CI u-95% CI eff.samp pMCMC 

(Intercept)   -0.1216  -0.6218   0.3347      983 0.596 

> install.packages("boot");library(boot) 

> inv.logit(summary(m7.bin)$solutions[1]) #intercept is 0.5 

[1] 0.4696424 

 

> plot(m7.bin$VCV) 

 

> data(PlodiaR)#and there is substantial variation above that from  

> #binomial process 
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Fig 47: Residuals  show substantial overdispersion 

 

> m8.bin <- MCMCglmm(cbind(Pupated,Infected)~1,  

+ family="multinomial2", 

+ data=PlodiaR, verbose=F) 

> plot(m8.bin$VCV)#again there is additional residual variation 

> #that variation may be attributed to family effects 
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> #are Family effects really so variable? 

> mode.mu <- posterior.mode(m8.bin$Sol) 

> mode.V <- posterior.mode(m8.bin$VCV) 

> ondatascale <- inv.logit(rnorm(10000, mean=mode.mu,  

+ sd=sqrt(mode.V))) 

> hist(ondatascale) #yes, they are! 

 
Fig 48: Histogram of the family effects based on estimates from the model 

 

 Things become more complicated if we don’t have such unit-grouping and 

every binary observation is repeated only once. Then we are not able to distinguish 

between equal probabilities in every unit or extreme asymmetry in some groups 

compared to others. Such scenarios would be indistinguishable and importantly every 

numerical inference would be biased by the choice of underlying residual (units) 

variance as it would be meaningless. We’ll reanalyse Plodia data, but rewritten in the 

form of binary variables. As in such process residual variance cannot be estimated 

we’ll fix it at some value and see what happens for different fixing values (Hadfield, 

2010b). 
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> ###code block 20 

 

> data(PlodiaRB) 

> prior1 <- list(R=list(V=1,fix=1),G=list(G1=list(V=1,nu=0.002))) 

> prior2 <- list(R=list(V=2,fix=1),G=list(G1=list(V=1,nu=0.002))) 

>  

> m9.bin1 <- MCMCglmm(Pupated~1,random=~FSfamily, 

+ family="categorical", 

+ data=PlodiaRB,prior=prior1,verbose=F) 

> m9.bin2 <- MCMCglmm(Pupated~1,random=~FSfamily, 

+ family="categorical", 

+ data=PlodiaRB,prior=prior2,verbose=F) 

>  

> plot(mcmc.list(m9.bin1$Sol,m9.bin2$Sol)) 

> plot(mcmc.list(m9.bin1$VCV,m9.bin2$VCV))#both posteriors differ! 

> #red trace is for V=2 

 

 

Fig 49: Models with residual variance fixed at two values 
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 Both intercept and family variance posteriors differ with regard to the 

residual variance we’ve chosen. However it should not worry us. First of all – what 

matter the most here is not the absolute variation among families, but the degree to 

which two states (Pupated/Infected) are correlated within the same family. This 

information is contained in the coefficient of intraclass correlation, calculated like this: 

IC = Var(FSfamily)/(Var(FSfamily)+Var(units)+c), where the constant 

c=pi^2/3 for logit link, and c=1 for probit link. You can check that both IC’s have the 

same posterior distribution: 

> ###code block 21 

 

> IC1 <- m9.bin1$VCV[,1]/(rowSums(m9.bin1$VCV)+pi^2/3) 

> IC2 <- m9.bin2$VCV[,1]/(rowSums(m9.bin2$VCV)+pi^2/3) 

> plot(mcmc.list(IC1,IC2)) 

 

 

Fig 50: Posterior distributions of intraclass correlation coeffcients 
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 As for intercept, we can use Hadfield’s results (2010b), due to Diggle et al. 

(2004), and rescale estimates so that they assumed some particular value of residual 

variance (Var(units)=v). Location effects (intercept, regression coefficients) can be 

rescaled by factor sqrt((1+c^2*v)/(1+c^2*Var(units))) and variance 

estimates may be rescaled by factor (1+c^2*v)/(1+c^2*Var(units)). The 

constant is 1 for probit and 16*sqrt(3)/15*pi for logit. Let’s try this for assumed 

residual variance of zero (v=0). Posteriors of Intercept are the same, up to Monte 

Carlo error. 

> ###code block 22 

 

> c <- 16*sqrt(3)/(15*pi) 

> Int1 <- m9.bin1$Sol/sqrt(1+c^2*m9.bin1$VCV[,2]) 

> Int2 <- m9.bin2$Sol/sqrt(1+c^2*m9.bin2$VCV[,2]) 

> plot(mcmc.list(Int1,Int2)) #the same 
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 Importantly, binary data can cause problems when there’s large (near 

complete) separation, i.e. when most successes happened in one unit and most 

failures in other. This is because although on the link (logit) scale prior for the mean is 

flat (large variance), it’s not flat at all on the data scale and has two distinct modes: 

> ###code block 23 

 

> hist(inv.logit(rnorm(1000,0,sqrt(1e+08)))) 

> #alternatively 

> #hist(plogis(rnorm(1000,0,sqrt(1e+08)))) 

 

 

 This inconsistency between the link and data scales isn’t that important if one 

analyses well structured data, e.g. where representation of “ones” and “zeros” is 

roughly equal in experimental units. However, if the effect on one factor is so strong 

that particular levels of this factor have only ones or zeros – problems may appear. 

This type of data is called to have large separation. Let’s simulate toy data with such 

huge separation (output of a theoretical experiment with control (1) and treatment 

(2) where treatment gets most/all zeros from the response) and see how we can 

analyse them using usual glm() and MCMCglmm(). Obviously, in such a case the 

effect of the treatment should be highly significant. It’s apparent, that only after 

changing the prior (and removing intercept) we can get some sensible results 

(Hadfield, 2010b). The correction we use is setting the prior for the mean to the value 

of 1+(π2/3). The improvement in mixing and traces’ shape is apparent and exact 

binomial test confirms that results of our model are sensible: 
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> ###code bloc 24 

 

> exper <- gl(2,25) 

> y <- rbinom(50,1,c(0.5, 0.001)[exper]) 

> bdata2 <- data.frame(exp=exper,y=y) 

> table(bdata2) 

   y 

exp  0  1 

  1 14 11 

  2 25  0 

>  

> m10.glm <- glm(y~exp,data=bdata2,family="binomial") 

> summary(m10.glm)#no significant effect! 

 

Call: 

glm(formula = y ~ exp, family = "binomial", data = bdata2) 

 

Deviance Residuals:  

       Min          1Q      Median          3Q         Max   

-1.077e+00  -1.077e+00  -7.976e-05  -7.976e-05   1.281e+00   

 

Coefficients: 

             Estimate Std. Error z value Pr(>|z|) 

(Intercept)   -0.2412     0.4029  -0.599    0.549 

exp2         -19.3249  2150.8026  -0.009    0.993 

 

(Dispersion parameter for binomial family taken to be 1) 

 

    Null deviance: 52.691  on 49  degrees of freedom 

Residual deviance: 34.296  on 48  degrees of freedom 

AIC: 38.296 

 

Number of Fisher Scoring iterations: 18 

 

 

> prior.def<-list(R=list(V=1,fix=1)) 

> m10.mc <- MCMCglmm(y~exp,data=bdata2,family="categorical", 

+ prior=prior.def,verbose=F)#significant result but... 

> summary(m10.mc) 

 

 Iterations = 12991 

 Thinning interval  = 3001 

 Sample size  = 1000  

 

 DIC: 36.75788  

 

 R-structure:  ~units 

 

      post.mean l-95% CI u-95% CI eff.samp 

units         1        1        1        0 

 

 Location effects: y ~ exp  

 

            post.mean l-95% CI u-95% CI eff.samp  pMCMC     

(Intercept)   -0.2432  -1.1484   0.7405  321.737  0.632     

exp2         -10.9369 -17.2524  -2.4858    6.142 <0.001 *** 

--- 
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Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1  

> plot(m10.mc$Sol)#...extreme autocorrelation observed 

 

 
Fig 51: Bad priors cause extreme autocorrelation 

> prior.better <- list(R=list(V=1,fix=1), 

+ B=list(mu=c(0,0),V=diag(2)*(1+pi^2/3))) 

> m10.mc2 <- MCMCglmm(y~exp,data=bdata2,family="categorical", 

+ prior=prior.better, verbose=F) 

> plot(m10.mc2$Sol) 

> #looks much better but still may need running for longer 
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Fig 52: Employing good priors removes most problems 

> #checking if the results conform to simpler test - exact binomial 

> m10.test <- binom.test(table(bdata2)[2,2],25) 

> m10.test 

 

        Exact binomial test 

 

data:  table(bdata2)[2, 2] and 25  

number of successes = 0, number of trials = 25, p-value 

= 5.96e-08 

alternative hypothesis: true probability of success is not equal to 0.5  

95 percent confidence interval: 

 0.0000000 0.1371852  

sample estimates: 

probability of success  

                     0  

 

 

> predict(m10.mc2,interval="confidence")[26,] 

        fit         lwr         upr  

0.045980115 0.003148058 0.116423314  



168 
 

Warning message: 

In predict.MCMCglmm(m10.mc2, interval = "confidence") : 

  predict.MCMCglmm is still developmental - be careful 

Closer look at categorical random interaction 

We’ve heard something on random interactions in lmer. Here we’ll extend this 

concept in MCMCglmm as it gives much greater control on (co)variance structures. 

 We could repeat our analysis when looking at the interaction between sex and 

dam in our system (BTdata). Previously we used two variance functions, allowing or 

not for non-zero covariances. Now we’ll repeat this analyses to have a closer look at 

these results. 

 
> ###code block 25 

 

> #if you haven’t – do the following 

> library(MCMCglmm); data(BTdata) 

 

> prior.a <- list(R=list(V=1,nu=0.002), 

+ G=list(G1=list(V=1,nu=0.002), 

+ G2=list(V=diag(3),nu=0.002))) 

> m11.bta <- MCMCglmm(tarsus~sex, random=~fosternest+idh(sex):dam, 

+ prior=prior.a,verbose=F, data=BTdata) 

> #using idh structure which sets covariances to zero 

> plot(m11.bta$VCV) 

> #UNK has low dam variance which may be problematic 

 

 We can see the actual matrix of correlations in the dam effects and its 

representation in the R3 space. 

> ###code block 26 

 

> Vdam.a <- diag(colMeans(m11.bta$VCV)[2:4]) 

> colnames(Vdam.a) <- colnames(m11.bta$VCV)[2:4] 

> Vdam.a 

       Fem.dam  Male.dam    UNK.dam 

[1,] 0.1765957 0.0000000 0.00000000 

[2,] 0.0000000 0.1715039 0.00000000 

[3,] 0.0000000 0.0000000 0.05000367 

>  

> plotsubspace(Vdam.a,axes.lab=T) 

Loading required package: rgl 

> #elipsoid depicting this covariance structure 
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Fig 53: Elipsoid depicting covariance structure with correlations fixed at zero 

 The same can be done with an alternative definition of covariance structure 

using us(). We’ve used this function already but now we’ll specify better prior. In 

general, priors for complex (co)variance structures depend on the particular structure 

(see next section). 

> ###code block 27 

>  

> prior.b <- list(R=list(V=1,nu=0.002), 

+ G=list(G1=list(V=1,nu=0.002), 

+ G2=list(V=diag(3)*0.02,nu=4))) 

> m11.btb <- MCMCglmm(tarsus~sex, random=~fosternest+us(sex):dam,  

+ prior=prior.b, 

+ verbose=F, data=BTdata) 

Warning message: 

In MCMCglmm(tarsus ~ sex, random = ~fosternest + us(sex):dam, prior = prior.b,  : 

  some combinations in us(sex):dam do not exist and 75 missing records have been 

generated 

> plot(m11.btb$VCV) 

 

> Vdam.b <- matrix(colMeans(m11.btb$VCV)[2:10],3,3) 

> colnames(Vdam.b) <- colnames(m11.btb$VCV)[2:4] 

> Vdam.b 

     Fem:Fem.dam Male:Fem.dam UNK:Fem.dam 

[1,]   0.2319357    0.1994277   0.2237089 

[2,]   0.1994277    0.2117362   0.2120803 

[3,]   0.2237089    0.2120803   0.2889578 

>  

> plotsubspace(Vdam.b,axes.lab=T) 

> #elipsoid depicting this covariance structure 
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Fig 54: Elipsoid depicting covariance structure with correlations estimated 

> plot(posterior.cor(m11.btb$VCV[,2:10])[,c(3,4,8)]) 

> #all r roughly equal to 1 

 

 
Fig 55: Posterior distributions of correlations 
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> "simpler model";m2.bt1$DIC 

[1] "simpler model" 

[1] 1992.66 

> "us() variance structure";m11.btb$DIC 

[1] "us() variance structure" 

[1] 1997.765 

> "idh() variance structure";m11.bta$DIC 

[1] "idh() variance structure" 

[1] 2037.151 

 

 As you can see both correlations are strong (almost 1) and variances are 

equal. Model with zero covariances is the worst, based on DIC values. Remaining two 

are similar but simpler one (equal variances and unity correlations) is better. In 

general, be careful when comparing models with different prior structures (as it was 

done here). DIC differences smaller than 2 should be treated with caution in such 

cases. 

Priors for complex covariance structures 

Complex variance structures have to take into account possible dependence of 

variances (which arises in case of non-zero covariances) (Hadfield, 2010b). For 

idh() variance structures it’s simple: each variance in the structure is distributed 

independently, so new prior (nu_ and V_, notation adopted from Hadfield (2010)) 

relates to a single-variance prior (nu and V) like this: 

σi
2 ~ IW(nu_=nu, V_=V[1,1]) 

Hence prior specification in the example: V=diag(3), nu=0.002. 

 For us() structures it’s more complicated: 

σi
2 ~ IW(nu_=nu-dim(V)+1, V_=V[1,1]*nu/nu_) 

Consequently, we used V=diag(3)*0.02 and nu=4. We did use nu=4 instead of 

usual nu=4.002 and lower variance value to make this prior proper but also 

uninformative for correlation. We could alternatively use an improper prior, by 

setting V=diag(dim(V))*0 and nu=dim(V)-3, but remember dangers of using 

improper priors. 

 Using inverse gamma distribution, with shape=nu/2 and 

scale=(nu*V)/2 we can actually visualize this prior for one of its elements: 

 

> ###code block 28 

 

> nu.star <- prior.b$G$G2$nu - dim(prior.b$G$G2$V)[1]*1 
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> V.star <- prior.b$G$G2$V[1,1]*(prior.b$G$G2$nu/nu.star) 

> xv <- seq(1e-16,1,length=100) 

> library(MCMCpack) 

> dv<-dinvgamma(xv,shape=nu.star/2,scale=(nu.star*V.star)/2) 

> detach(package:MCMCpack) 

> plot(dv~xv,type="l") 

 

 

Fig 56: Inverse Wishart distribution; see text for details 
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Part C ~ Extending linear mixed models 

Brief introduction to phylogenies in R 

Phylogenies in some way are similar to pedigrees. They also represent relationships,  

however not between individuals, but between species or higher taxa. We may use 

them in MCMCglmm in exactly the same way as we did with pedigrees and thus build 

phylogenetic comparative models, accounting for variability that might have arisen 

from evolutionary history rather than genuine ecological/individual-based processes. 

First we’ll learn how to build and handle phylogenies in R. We’ll use the package ape 

and as its output objects can be directly handled by MCMCglmm. 

 We’ll work with the mammals species phylogeny based on mammals super-

tree and provided in Adams (2007). 

> ###code block B6 

 

> mammals <- read.nexus("mammals.nex")#read a tree in Nexus format 

> mammals 

 

Phylogenetic tree with 40 tips and 35 internal nodes. 

 

Tip labels: 

        Rattus_rattus, Sigmodon_hispidus, Peromyscus_eremicus, Peromyscus_maniculatus, 

Neotoma_cinerea, Microtus_pennsylvanicus, ... 

 

Rooted; includes branch lengths. 

> summary(mammals) 

 

Phylogenetic tree: mammals  

 

  Number of tips: 40  

  Number of nodes: 35  

  Branch lengths: 

    mean: 19.89730  

    variance: 641.1923  

    distribution summary: 

   Min. 1st Qu.  Median 3rd Qu.    Max.  

   0.10    3.10    9.10   26.52   94.50  

  No root edge. 

  First ten tip labels: Rattus_rattus  

                        Sigmodon_hispidus 

                        Peromyscus_eremicus 

                        Peromyscus_maniculatus 

                        Neotoma_cinerea 

                        Microtus_pennsylvanicus 

                        Microtus_montebelli 



174 
 

                        Chaetodipus_penicillatus 

                        Dipodomys_ordii 

                        Dipodomys_compactus 

  No node labels. 

> mammals.plot<-plot(mammals,font=1,cex=0.75) 

> nodelabels() 

 

 
Fig 57: Mammals phylogeny 

> #if you want you can write the tree in newick or nexus format 

> write.nexus(mammals,file="mammals.nex") 

> write.tree(mammals,file="mammals.nck") 

 If you don’t have the tree and just have information to build one (e.g. DNA 

sequences) you can do this in ape. You can choose among different methods of 

clustering and different models of evolution. 

> ###code block B7 

 

> data(woodmouse) 

> woodmouse 

15 DNA sequences in binary format stored in a matrix. 
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All sequences of same length: 965  

 

Labels: No305 No304 No306 No0906S No0908S No0909S ... 

 

Base composition: 

    a     c     g     t  

0.307 0.261 0.126 0.306  

> base.freq(woodmouse) 

        a         c         g         t  

0.3065414 0.2613083 0.1260264 0.3061239  

 

> write.dna(woodmouse,"woodmouse.fas",format="fasta")#saving DNA data 

> rodents <- read.dna("woodmouse.fas",format="fasta")#and reading it 

 

> rodents[1,] #first sequence 

1 DNA sequences in binary format stored in a matrix. 

 

All sequences of same length: 965  

 

Labels: No305  

 

Base composition: 

    a     c     g     t  

0.304 0.262 0.129 0.306  

> #here we can represent DNA sequence as text and paste single bases  

> #together using no character as separator (collapse argument) 

> paste(as.character(rodents[1,1:50]),collapse="") 

 [1] "nttcgaaaaacacacccactactaaaanttatcagtcactccttcatcga" 

 

> #calculate phylogeny based on these sequences 

> dist.dna(rodents[1:5,]) 

              No305       No304       No306     No0906S 

No304   0.015975800                                     

No306   0.013815969 0.004210551                         

No0906S 0.019213434 0.013802125 0.009514854             

No0908S 0.017059224 0.011665428 0.007391898 0.012726856 

> rodents.dist<-dist.dna(rodents) 

> as.matrix(dist.dna(rodents[1:5,])) # looks much better 

             No305       No304       No306     No0906S     No0908S 

No305   0.00000000 0.015975800 0.013815969 0.019213434 0.017059224 

No304   0.01597580 0.000000000 0.004210551 0.013802125 0.011665428 

No306   0.01381597 0.004210551 0.000000000 0.009514854 0.007391898 

No0906S 0.01921343 0.013802125 0.009514854 0.000000000 0.012726856 

No0908S 0.01705922 0.011665428 0.007391898 0.012726856 0.000000000 

 

> #build a tree using UPGMA 

> cluster<-hclust(rodents.dist) 

> rodents.upgma<-as.phylo(cluster) 

> plot(rodents.upgma,cex=0.75,font=1,no.margin=T) 
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Fig 58: UPGMA tree 

> #we can use neighbour joining instead 

> cluster.nj<-nj(rodents.dist) 

> rodents.nj<-as.phylo(cluster.nj) 

> plot(rodents.nj,cex=0.75,font=1,no.margin=T) 

 

 
Fig 59: NJ tree 
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 The package ape provides also improved Gascuel’s NJ method bionj() and 

several evolution models for calculating distances between sequences (e.g. 

model=”JC69”; other models are “K81”, “F84”, “GG85” – see ?dist.dna() for more 

details). 

Having several trees it’s good to be able to compare them. 

> ###codeblock B8 

 

> #compare trees 

> all.equal(rodents.nj,rodents.bionj) 

[1] FALSE 

> #and ignoring branch lengths - i.e. comparring only topologies 

> all.equal(rodents.nj,rodents.bionj,use.edge.length=F) 

[1] TRUE 

> #topologies are the same 

 

> #having a lot of trees you can calculate distances between them 

> #here we use rtree() as in distribution functions to generate random  

> #trees 

> dist.topo(rtree(30),rtree(30)) 

[1] 54 

 

However, real comparison of trees employs testing, either using 

bootstrapping or likelihood methods. Here we’ll bootstrap our NJ tree. From those 

who are interested – see package phangorn which offers much more advanced 

functions for bootstrapping and ML-ing trees. 

> ###code block B9 

 

> #inside the bootstrapping function we must define the  

> #tree-building function 

> rodents.boot <- boot.phylo(rodents.nj,rodents, 

+ function(x){nj(dist.dna(x))}, 

+ B=200,block=1) 

> rodents.boot/2 

 [1] 100.0  22.0  53.5  51.5  56.0  42.0  67.5 

 [8] 65.5  87.5  90.0  87.0  99.5  59.0 

> plot(rodents.nj) 

> nodelabels(rodents.boot/2) 
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Fig 60: Mammalian tree with bootstrapping results 

What are phylogenies for? If one has the data on some measurements done to 

several taxonomic units and a tree relating these taxonomic units one to another, it is 

possible to extract from these data phylogenetically independent information, in the 

form of phylogenetically independent contrasts (PICs). For more details see the 

documentation of the pic() function. However, currently PICs are not so widely used, 

mainly because mixed models allow for direct incorporation of phylogenetic 

information, similarly as it is done for genealogical information in animal model. How 

is it done? 

Comparative analysis – simple simulated case 

In the context of linear modelling phylogenies are used to remove any 

phylogenetic dependencies from our data. Most modern software packages allow for 

direct incorporation of phylogenetic information. Here we’ll use simple simulated data 

on some hypothetical trait (called y). Evolution of this trait will be simulated across 

the phylogeny of bird families, supplied together with the ape package. First we’ll 

load required packages and data. 
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> ### code block B13 

 

> library(MCMCglmm); data(bird.families) 

> bf.sim <- rTraitCont(bird.families, 

+ sigma=runif(Nedge(bird.families),0.1,0.7)) 

> #see ?rTraitCont for more details 

> bf.sim <- data.frame(y=bf.sim,animal=names(bf.sim)) 

> bf.sim[1:20,] 

                         y         animal 

Struthionidae  -0.60573476  Struthionidae 

Rheidae        -2.68284592        Rheidae 

Casuariidae     2.46897329    Casuariidae 

Apterygidae     1.09753708    Apterygidae 

Tinamidae       0.24638486      Tinamidae 

Cracidae       -0.67455764       Cracidae 

Megapodiidae    1.74500202   Megapodiidae 

Phasianidae     0.61040649    Phasianidae 

Numididae       1.65685699      Numididae 

Odontophoridae  0.77349921 Odontophoridae 

Anhimidae      -2.55968724      Anhimidae 

Anseranatidae   1.37302713  Anseranatidae 

Dendrocygnidae  0.05206279 Dendrocygnidae 

Anatidae       -2.81114176       Anatidae 

Turnicidae      2.64692783     Turnicidae 

Indicatoridae  -0.16953127  Indicatoridae 

Picidae        -0.91794680        Picidae 

Megalaimidae    0.82388019   Megalaimidae 

Lybiidae        1.38448623       Lybiidae 

Ramphastidae    0.19388505   Ramphastidae 

 

> #we'll add some residuals on top 

> err <- rnorm(137,sd=sqrt(3)) #there are 137 points in the data 

> bf.sim[,1]<-bf.sim[,1]+err 

 

> #and replication 

> bf.sim2 <- as.data.frame(bf.sim[sample(1:137,50),]) 

> err2 <- rnorm(50,runif(20,1,2),sqrt(3)) 

> bf.sim2[,1]<-bf.sim2[,1]+err2 

 

> bf.sim3 <- as.data.frame(bf.sim[sample(1:137,50,replace=T),]) 

> err3 <- rnorm(50,runif(20,1.5,2.5),sqrt(3)) 

> bf.sim3[,1]<-bf.sim3[,1]+err3 

 

> #and combine the three 

> bf.sim<-rbind(bf.sim,bf.sim2,bf.sim3) 

> summary(bf.sim) 

       y                       animal    

 Min.   :-6.6159   Casuariidae    :  4   

 1st Qu.:-1.9046   Laridae        :  4   

 Median : 0.2256   Pedionomidae   :  4   

 Mean   : 0.2603   Acanthisittidae:  3   

 3rd Qu.: 2.1467   Climacteridae  :  3   

 Max.   : 9.9202   Cracidae       :  3   

                   (Other)        :216   
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 Analysing these data with phylogeny is as simple as fitting an  animal model. 

> prior.b52 <- list(R=list(V=1,nu=0.002),G=list(G1=list(V=1,nu=0.002))) 

> m.b53 <- MCMCglmm(y~1,random=~animal,pedigree=bird.families, 

+ data=bf.sim,verbose=F,prior=prior.b52) 

Warning message: 

In MCMCglmm(y ~ 1, random = ~animal, pedigree = bird.families, data = bf.sim,  : 

  some combinations in animal do not exist and 134 missing records have been generated 

> plot(m.b53$VCV) #phylogenetic signal is significant 

 
Fig 61: Comparative model; see large animal variance 

> posterior.mode(m.b53$Sol) 

(Intercept)  

   1.040746  

> m.b53a <- MCMCglmm(y~1,data=bf.sim,verbose=F) 

> posterior.mode(m.b53a$Sol) 

(Intercept)  

  0.6232146  

 

> #as in ordinary animal model we can estimate so  

> #called phylogenetic heritability 

> #the proportion of total variance explained by  

> #phylogenetic effects of shared ancestry 
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> hp2 <- m.b53$VCV[,"animal"]/rowSums(m.b53$VCV) 

> posterior.mode(hp2) 

     var1  

0.7875332  

> HPDinterval(hp2) 

        lower     upper 

var1 0.680153 0.8452737 

attr(,"Probability") 

[1] 0.95 

 

As you can see, not accounting for phylogeny may yield false picture of the reality 

underlying measured traits. We could expand this model and analyse more than one 

trait and see if they evolve in a correlated fashion across the phylogeny – which would 

be equivalent of calculating ordinary genetic correlation in an animal model 

framework. 

Meta-analysis 

Now we’ll extend what we’ve learned so far and fit meta-analysis. Meta-analytical 

approach became very popular recently as it allows for answering very general 

questions. In its essence meta-analysis is very simple – instead of analysing raw data 

we take already calculated trends/statistics and look at their variability. In general, 

meta-analysis asks if predicted values of statistics holds after accounting for many 

studies, or if predicted relationship exists at the level of many  studies. In such a case 

you assume that any error (residual variation) in our data is due to error in estimating 

statistics. In other words we can insert this error as some a priori known “residuals”. 

Note, that sometimes meta-analyst is able to get accurate “raw” data from 

publications. In this case we use ordinary GLMM with response and estimated residual 

variance (one of the best examples is Cornwallis et al. (2010)). 

 Here we’ll use example from Adams (2007). He examined if there are any 

body size clines in mammals, i.e. if mammals are larger in larger latitudes, where the 

climate is cooler. He gathered data on different mammal taxa from many papers, and 

for each paper he calculated effect size as the correlation between mammal body size 

and latitude. Following his paper and general strategy of meta-analysis we’ll estimate 

measurement error (sampling variance of the statistic) based on the number of 

geographic locations from which data were available in each study. At first we’ll try 

simple meta-analysis, ignoring any phylogenetic dependence of examined taxa. 

> ### code block C1 

 

> #if not loaded already: 

> library(MCMCglmm) 

> clines <- read.csv("mamm_clines.csv",head=T) 

> clines<-clines[,-4] 
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> #effect size 

> clines$FisherZ<-0.5*log((1+clines$corr)/(1-clines$corr)) 

> clines$mev<-1/(clines$N-3)#measurement error as variance 

 

> prior.c1 <- list(R=list(V=1,nu=0.002)) 

 

> m.c11 <- MCMCglmm(FisherZ~1, verbose=F, prior=prior.c1, 

+ data=clines)  

> summary(m.c11) 

 

 Iterations = 12991 

 Thinning interval  = 3001 

 Sample size  = 1000  

 

 DIC: 96.98406  

 

 R-structure:  ~units 

 

      post.mean l-95% CI u-95% CI eff.samp 

units    0.6406   0.3784   0.9262     1000 

 

 Location effects: FisherZ ~ 1  

 

            post.mean l-95% CI u-95% CI eff.samp pMCMC   

(Intercept)   0.29774  0.05018  0.52676     1000 0.012 * 

--- 

 

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 

 

> #we add sampling error of statistics mev 

> m.c12 <- MCMCglmm(FisherZ~1, verbose=F, prior=prior.c1, 

+ data=clines, mev=clines$mev) 

> #note the mev argument typical for meta-analysis 

 

Loading required package: polynom 

> summary(m.c12) 

 

 Iterations = 12991 

 Thinning interval  = 3001 

 Sample size  = 1000  

 

 DIC: 88.50683  

 

 R-structure:  ~units 

 

                                             post.mean l-95% CI u-95% CI 

leg(mev, -1, FALSE):leg(mev, -1, FALSE).meta         1        1        1 

                                             eff.samp 

leg(mev, -1, FALSE):leg(mev, -1, FALSE).meta        0 

 

 Location effects: FisherZ ~ 1  

 

            post.mean l-95% CI u-95% CI eff.samp pMCMC   

(Intercept)   0.21998  0.01472  0.45575    961.3 0.044 * 

--- 

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1  

> plot(m.c12) #check for autocorrelation problems 
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> #funnel plot below confirms overall positive effect 

> plot(corr~N,data=clines,type="p",pch=20,ylab="Correlation", 

+ xlab="N locations") 

> abline(h=mean(clines$corr),lwd=1,lty=3) 

 
Fig 62: Funel-plot for Adams (2007) 

It seems that there’s an overall tendency in mammals to be bigger as they live 

further from the equator. If this phenomenon was due to ecological processes it might 

indicate that, as endotherms, mammals tend to be larger in cooler climate to conserve 

heat. Such pattern would thus indicate that during evolution mammals evolved this 

mechanism of saving body heat. However, such correlation of body size and latitudinal 

distribution could also arise simply during evolutionary history as a result of non-

random migration patterns etc. If so we would expect that closely related species 

would show similar relationship of body size vs. latitude; in other words, in such a 

scenario phylogenetic variation would explain large proportion of variance in our 

effect size measures. To test this we perform comparative meta-analysis, taking into 

account phylogeny of mammals. As it turns out – the overall effect disappears clearly 

showing that any observed relationships are only due to shared evolutionary history. 
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> library(ape) 

> mammals <- read.nexus("mammals.nex") #relevant phylogenetic tree 

> plot(mammals,cex=0.75) 

 
Fig 63: Phylogenetic tree form Adams (2007) 

 

> names(clines)[1]<-"animal" #names of the taxa to the animal variable 

> prior.c2 <- list(R=list(V=1,nu=0.002), 

+ G=list(G1=list(V=1,nu=0.002))) 

> m.c13 <- MCMCglmm(FisherZ~1, verbose=F, prior=prior.c2, 

+ data=clines, 

+ mev=clines$mev,random=~animal, 

+ pedigree=mammals, 

+ nitt=150000,burnin=30000,thin=150) 

Warning message: 

In MCMCglmm(FisherZ ~ 1, verbose = F, prior = prior.c2, data = clines,  : 
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  some combinations in animal do not exist and 34 missing records have been generated 

 

> plot(m.c13$VCV) #phylogenetic signal is significant although small 

 
Fig 64: Random effects in comparative meta-analysis from Adams (2007) 

 

 

> summary(m.c13) 

 

 Iterations = 149851 

 Thinning interval  = 30001 

 Sample size  = 800  

 

 DIC: 57.50496  

 

 G-structure:  ~animal 

 

       post.mean  l-95% CI u-95% CI eff.samp 
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animal    0.3906 0.0003283     1.05    546.9 

 

 R-structure:  ~units 

 

      post.mean  l-95% CI u-95% CI eff.samp 

units    0.2281 0.0009862   0.5038    521.4 

 

 Location effects: FisherZ ~ 1  

 

            post.mean l-95% CI u-95% CI eff.samp pMCMC 

(Intercept)    0.3414  -0.1611   0.9201      800 0.143 

 

 

 

> diag(autocorr(m.c13$VCV)[2,,]) 

                                      animal  

                                   0.1270430  

leg(mev, -1, FALSE):leg(mev, -1, FALSE).meta  

                                         NaN  

                                       units  

                                   0.1609003  

> #should be ran for longer - >300000 

> #BUT effect we looked for disappeared... 

 

Random regression 

In the basic part chapter we learned how to fit categorical random interactions. It’s 

equal to allowing for differences in the intercept across the levels of random term. 

However, sometimes it is sensible to add also differences in slopes among 

individuals/units. Such models are called random regression models. We will use 

strategy from Hadfield (2010) for the longitudinal data on chicken growth. First, let’s 

analyse it with a simple model. Fitting random effect of the chick id means that we 

want to have separate intercepts for each chick. As the data are not linear we will stick 

to some polynomial approximations of curvilinearity. 

> ###code block B14 

 

> #if not loaded: 

> library(MCMCglmm) 

> data(ChickWeight) 

> xyplot(weight~Time|Chick,data=ChickWeight) 

> #it visualises the effect of time on growth for all chicks 
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Fig 65: Growth curves for 50 chickens 

> prior.b61 <- list(R=list(V=1e-16,nu=-2),G=list(G1=list(V=1,nu=1))) 

> m.b61 <- MCMCglmm(weight~Diet+poly(Time,2,raw=T),random=~Chick, 

+ data=ChickWeight, verbose=F, pr=T, prior=prior.b61, 

+ saveX=T, saveZ=T) 

 

> #simple random effect model with curvilinear pattern 

> #we also save X and Z – fixed and random effects design matrices 

> #all random effects (i.e. posteriors for BLUPs) using pr=T 

 

> pop.int <- posterior.mode(m.b61$Sol[,1]) #overall intercept 

> pop.slope <- posterior.mode(m.b61$Sol[,5]) #overall linear slope 

> pop.quad <- posterior.mode(m.b61$Sol[,6]) #overall quadratic slope 

> chick.int <- posterior.mode(m.b61$Sol[,c(7:56)]) #chicks’ intercepts 

 

> time <- ChickWeight$Time[1:12] 

 

> plot(pop.int+pop.slope*I(time^1)+pop.quad*I(time^2)~time, 
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+ type="l",lwd=2,ylim=c(-50,400)) #plots overall population curve 

> for(i in 1:50) { 

+ lines(pop.int+chick.int[i]+pop.slope*I(time^1)+ 

+ pop.quad*I(time^2)~time,lty=3,col="red") 

+ } #plots curves for each chocks with their specific intercepts 

 
Fig 66: Population curve (thick black) and chick-specific curves (dotted red) 

 

> #we can print predictions from our model for each chick by  

> #multiplying design matrix W=[X,Z] for effects by  

> #parameter vector theta=[beta,u] 

> W1 <- cBind(m.b61$X,m.b61$Z) 

> theta <- posterior.mode(m.b61$Sol) 

> prediction1 <- W1 %*% theta #%*% means matrix product 

> xyplot(weight+prediction1[,1]~Time|Chick,data=ChickWeight) 
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Fig 67: Chickens' growth curves with predictions added (pink, see PDF version) 

As expected, model fits well, predictions look reasonable. However, slight differences 

are visible between predicted and real curves for some chicks. Thus, we might as well 

allow for differences in slopes between chicks. In the simpler model in random effects 

we fitted just single variance, i.e. σ2(Intercept). Interacting random term with both 

intercept and slope yields 2x2 covariance structure: 
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> prior.b62 <- list(R=list(V=1e-16,nu=-2), 

+ G=list(G1=list(V=diag(2),nu=2))) 

> #use matrix (hence diag()) since random effects have complex structure 

> m.b62 <- MCMCglmm(weight~Diet+poly(Time,2,raw=T), 

+ random=~us(1+Time):Chick, 

+ data=ChickWeight, verbose=F,  

+ pr=T,prior=prior.b62,saveX=T,saveZ=T) 

> #use us() to allow for covariance between intercept and slope 

 

 

> diag(autocorr(m.b62$VCV)[2,,]) #diagnostics 

(Intercept):(Intercept).Chick        Time:(Intercept).Chick  

                   0.10739398                    0.03065336  

       (Intercept):Time.Chick               Time:Time.Chick  

                   0.03065336                   -0.01052061  

                        units  

                  -0.01388139  

> r.int.slope <- m.b62$VCV[,2]/sqrt(m.b62$VCV[,1]*m.b62$VCV[,4]) 

> posterior.mode(r.int.slope) 

      var1  

-0.9701405  

> #correlation close to space boundary - should be run for longer 

 

> #could do predictions by hand or like here by using predict() 

> xyplot(weight+predict(m.b62,marginal=NULL)~Time|Chick,data=ChickWeight) 

Warning message: 

In predict.MCMCglmm(m.b62, marginal = NULL) : 

  predict.MCMCglmm is still developmental - be careful 
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Fig 68: Chickens' growth curves with predictions from first random regression 

> #looks MUCH better - may could be better  

> #adding second random slope for quadratic term? 

> prior.b63 <- list(R=list(V=1e-16,nu=-2), 

+ G=list(G1=list(V=diag(3),nu=3))) 

> m.b63 <- MCMCglmm(weight~Diet+poly(Time,2,raw=T), 

+ random=~us(1+poly(Time,2,raw=T)):Chick, 

+ data=ChickWeight, verbose=F, pr=T, 

+ prior=prior.b63,saveX=T,saveZ=T) 

 

> #DICs confirm it’s the best model - hence chicks differ both in  

> #intercepts and (quadratic)slopes 

> m.b61$DIC;m.b62$DIC;m.b63$DIC 

[1] 5525.139 

[1] 4543.945 

[1] 3933.421 
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> #to confirm we could see if REML estimators corroborate 

> #these conclusions 

> library(lme4) 

> m.b61reml <- lmer(weight~Diet+poly(Time,2,raw=T)+(1|Chick), 

+ data=ChickWeight) 

> summary(m.b61reml)@AICtab[1] 

      AIC 

 5578.963 

 

> m.b62reml <- lmer(weight~Diet+poly(Time,2,raw=T)+(1+Time|Chick), 

+ data=ChickWeight) 

> summary(m.b62reml)@AICtab[1] 

      AIC 

 4732.387 

 

> m.b63reml <- lmer(weight~Diet+poly(Time,2,raw=T)+ 

+ (1+poly(Time,2,raw=T)|Chick), 

+ data=ChickWeight) 

> summary(m.b63reml)@AICtab[1] 

      AIC 

 4267.013 

> detach(package:lme4) 

 

 Unfortunately, in pursue for the best model we forgot about one thing. In case 

of random slope models we should check not only if model is the best-fitting one, but 

also how well it’s variance structure describes variance in the real data. Particularly, 

having intercept + n slopes fitted as random we expect that variance should change as 

the function of n-th degree with the continuous predictor (see Hadfield, 2010b for 

more detailed description of this example). We’ll see how it works for toy data and 

then inspect our models. In general, from linear modelling theory, variance in the 

response should follow something like this: Var[y]=diag(ZVZ’) where Z is the design 

matrix for random effects and V is estimated covariance matrix. We can calculate this 

directly, having saved design matrices in our models (saveZ=T). However, here we’ll 

create our own Z to avoid problems caused by duplication of records (we had several 

Diets and several Time points for every Chicken). We create hypothetical design 

matrix as if there was one chicken measured over 100 time points. 

> toyslope <- rnorm(30)#30 random slopes ~N(0,1) 

> #prepare space for the plots 

> plot(0,type="n",xlim=c(-1,1),ylim=c(-3,3),ylab="y",xlab="time") 

> for (i in 1:30) { #for each of 30 slopes 

+ abline(a=0,b=toyslope[i]) #print its line 

+ } 
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Fig 69: Simulated data with increasing variance 

 

> time<-seq(0,21,length=100) 

> polynomial<-leg(time,2,normalized=F) 

> #better than poly because generates first column of ones giving 

> #appropriate design matrix for fixed and random slope effects 

 

> #coeficients for fixed effects from above 3 models 

> beta1 <- c(posterior.mode(m.b61$Sol[,1]),posterior.mode(m.b61$Sol[,5]), 

+ posterior.mode(m.b61$Sol[,6])) 

> beta2 <- c(posterior.mode(m.b62$Sol[,1]),posterior.mode(m.b62$Sol[,5]), 

+ posterior.mode(m.b62$Sol[,6])) 

> beta3 <- c(posterior.mode(m.b63$Sol[,1]),posterior.mode(m.b63$Sol[,5]), 

+ posterior.mode(m.b63$Sol[,6])) 

 

> #covariance matrices and residuals from above 3 models 

> VCV1 <- matrix(posterior.mode(m.b61$VCV)[1],1,1)#single variance 

> VCV2 <- matrix(posterior.mode(m.b62$VCV)[1:(2^2)],2,2)#4 parameters 

> VCV3 <- matrix(posterior.mode(m.b63$VCV)[1:(3^2)],3,3) 

> #9 parameters 

> units1 <- posterior.mode(m.b61$VCV)[2] 

> units2 <- posterior.mode(m.b62$VCV)[5] 

> #5th parameter cause 4 for (co)variances 

> units3 <- posterior.mode(m.b63$VCV)[10] 

> #10th cause 9 pars for (co)variances 

 

> plot(weight~Time,data=ChickWeight,cex.lab=1.5) #point data 

 

> mu1 <- polynomial %*% beta1 #population line across time 
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> sd1 <- sqrt(units1+diag(polynomial[,1,drop=F]%*% 

+ VCV1%*%t(polynomial[,1,drop=F]))) 

> #%*% multiplies matrices; drop lets matrix be a matrix 

> #after extracting one dimension, otherwise it would be a vector 

> #and would cause problems when 

> #trying to multiply to get ZVZ'; by using first column of 

> #polynomial we create 'new' Z matrix appropriate for  

> #the time sequence we have, of length 

> #100 rather than 12 

 

> lines(mu1~time,lwd=2) #adds population line 

> lines(I(mu1+1.96*sd1)~time,lty=2,lwd=1,col="red") 

> lines(I(mu1-1.96*sd1)~time,lty=2,lwd=1,col="red") 

> #adds the error associated with population line 

 
Fig 70: Estimated variance structure from simple mixed-effect model 

 

> #very poor fit since SE is constant and points’ scatter increases 

 

> plot(weight~Time,data=ChickWeight,cex.lab=1.5) 

> mu2 <- polynomial %*% beta2 #population line across time 

> sd2 <- sqrt(units2+diag(polynomial[,1:2,drop=F]%*%VCV2%*% 

+ t(polynomial[,1:2,drop=F]))) 

> lines(mu2~time,lwd=2) 
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> lines(I(mu2+1.96*sd2)~time,lty=2,lwd=1,col="red") 

> lines(I(mu2-1.96*sd2)~time,lty=2,lwd=1,col="red") 

> #very good fit of variance change to data 

 
Fig 71: Estimated variance structure for linear random slope model 

> #good fit of SE structure to points’ variance 

> plot(weight~Time,data=ChickWeight,cex.lab=1.5,ylim=c(-150,600)) 

> mu3 <- polynomial %*% beta3 #population line across time 

> sd3 <- sqrt(units2+diag(polynomial[,1:3,drop=F]%*%VCV3%*% 

+ t(polynomial[,1:3,drop=F]))) 

> lines(mu3~time,lwd=2) 

> lines(I(mu3+1.96*sd3)~time,lty=2,lwd=1,col="red") 

> lines(I(mu3-1.96*sd3)~time,lty=2,lwd=1,col="red") 
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Fig 72: Estimated variance structure from quadratic random slope model 

> #very poor  fit of variance change to data, 2nd model seems the best! 

 

As you can see – the goodness of fit is not the only thing one should look for in 

continuous random effects – other factors such as variance homogeneity should also 

be considered. 
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Part D ~ Advanced applications of 

MCMCglmm 

Parameter expanded priors 

One drawback of using MCMC is it’s randomness and sensitivity to the i-1th values of 

the chain. In practise it means that if in our model some variance components yield 

low values, close to zero, the chain may be trapped at some low value close to zero 

causing mixing-problems and in general poor convergence. It may also happen when 

some parameters, such as correlations, are close their space boundaries (-1 and 1). 

Such problems arise especially when residual variance per se cannot be estimated, as 

it is in binomial or Poisson models. 

We can try alleviate these problems by using stronger priors – or improper 

priors. However, there’s a much better solution called parameter expansion. Assume 

we have the design matrix W of the form [X Z1 Z2 … Zk]. We can rescale this matrix 

(and thus – whole MC-sampled parameter space) by some parameters α = [1, α1, α2, … 

αk]. This would yield Wα = [X Z1 α1 Z2 α2 … Zk αk]. With these alphas we would actually 

sample new location effects that could be rescaled to original values: θ = (Iβ⨁k
i=1Iu{i} ⋅ 

αi)θα. Likewise, rescaling could also be applied to (co)variance matrices: V = Diag(αV) 

Vα Diag(αV)’ (Hadfield, 2010b) 

Here, we’ll analyse data on sex-ration in blue tits (you already know this 

dataset) using both parameter-expanded and standard priors. We’ll compare mixing 

properties of these runs. The expanded prior is the half-Cauchy distribution with the 

scale of 1000. 

> ###code block C3 

 

> #if not loaded: 

> library(MCMCglmm) 

> data(BTdata) 

 

> #we'll remove unkown sex 

> BTdata$sex[which(BTdata$sex=="UNK")]<-NA 

> BTdata$sex<-gdata::drop.levels(BTdata$sex) 

> #we remove UNK level from the variable 

 

> prior.c31 <-list(R=list(V=1,fix=1), 

+ G=list(G1=list(V=1,nu=0.002, 



198 
 

+ alpha.mu=0,alpha.V=1000))) #parameter-expanded prior 

> prior.c32 <- list(R=list(V=1,fix=1), 

+ G=list(G1=list(V=1,nu=0.002))) 

 

> m.c4a <- MCMCglmm(sex~1,random=~dam,data=BTdata, 

+ family="categorical",prior=prior.c31,verbose=F, 

+ nitt=25000,burnin=5000,thin=25) 

 

> m.c4b <- MCMCglmm(sex~1,random=~dam,data=BTdata, 

+ family="categorical",prior=prior.c32,verbose=F, 

+ nitt=25000,burnin=5000,thin=25) 

 

> plot(mcmc.list(m.c4a$VCV[,"dam"],m.c4b$VCV[,"dam"]), 

+ col=c("red","green")) 

> effectiveSize(m.c4a$VCV[,"dam"]) 

    var1  

354.4503  

> effectiveSize(m.c4b$VCV[,"dam"]) 

    var1  

163.9470 

 
Fig 73: Traces from Wishart (green) and parameter expanded (red) priors (see PDF version) 
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Clearly, mixing of the non-expanded model is poorer (see the lower sample size). Also, 

the green trace on the above graph (see the electronic version) shows clear downward 

trend. The red trace (reflecting parameter expansion) is fairly constant, with much 

larger sample size associated. For more detailed formulation of parameter expansion 

and excellent discussion on the subject see Gellman (2006). 

Zero-inflated models (ZIP) and zero-altered (ZAP) models 

In biology often we end up with data where our treatments had no effect on the 

subject. It’s especially apparent for count data, generated by Poisson processes, and 

binary data (binomial process). In such data, zeros occur often – and sometimes too 

often. In MCMCglmm there’s one special class of distributions – zero-inflated 

distributions – to deal with zero-inflation. Models built using ZIP in fact analyse two 

separate traits (bivariate models). E.g. in zero-inflated Poisson (ZIP), first variable 

models probability from a Poisson process, and second models probability (binomial) 

that zero comes from a zero-inflated process (yes or no). We have to account for this 

structure of effects in our (co)variance structure, remembering that covariance 

between these two processes cannot be estimated as they never occur together in one 

data point (hence rcov=~idh(trait):units). To illustrate we will fit a ZIP model to 

data on PhD. Students’ publishing rates, related to different features of their 

supervisors. Note two things: first – priors take into account bivariate nature of the 

model (the diag(2) function); secondly – in model we use at.level(trait,1) to 

indicate that we want to see the effect of all factors on the first level of the variable 

trait (i.e. only for the real Poisson process and not for the zero-inflated process). 

> ### code block C6 

 

> #if not loaded 

> library(MCMCglmm) 

> install.packages(“pscl”); library(pscl) 

> data(bioChemists) 

> head(bioChemists) #see ?bioChemists for the description of the data 

  art   fem     mar kid5  phd ment 

1   0   Men Married    0 2.52    7 

2   0 Women  Single    0 2.05    6 

3   0 Women  Single    0 3.75    6 

4   0   Men Married    1 1.18    3 

5   0 Women  Single    0 3.75   26 

6   0 Women Married    2 3.59    2 

 

> #it seems there are lots of zeros in art (number of papers/year) 

> sum(bioChemists$art==0)/length(bioChemists$art)#more than 30% are zeros 

[1] 0.3005464 

> #end we'd expect only 18% under Poisson process 

> ppois(0,mean(bioChemists$art)) 

[1] 0.1839859 
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> prior.c71 <- list(R=list(V=diag(2),nu=0.002,fix=2)) 

 

> m.c71 <- MCMCglmm(art~trait-1+at.level(trait,1):fem+ 

+ at.level(trait,1):mar+ 

+ at.level(trait,1):kid5+at.level(trait,1):phd+at.level(trait,1):ment, 

+ rcov=~idh(trait):units,data=bioChemists,prior=prior.c71, 

+ family="zipoisson",verbose=F) 

Warning message: 

In MCMCglmm(art ~ trait - 1 + at.level(trait, 1):fem + at.level(trait,  : 

  some fixed effects are not estimable and have been removed. Use singular.ok=TRUE to 

sample these effects, but use an informative prior! 

 

> plot(m.c71$Sol[,1:4]) #note poor mixing for zero-inflated process (2nd) 

 

As you can see – fitting ZIP model is simple. However, even when we think we 

need ZIP, it may be not really necessary – as seen here, based on naïve quantiles or 

post-fitting check based on predicted values. 

 Alternative for ZIP models can be found and it’s called Hurdle models. They’re 

very similar to ZIP models in that they also model two variables. However, the first 

one models the probability from zero-truncated Poisson distribution (Poisson process 

without zeros; in ZIP it was just Poisson process distribution) and the second one 

models binary process (yes or not) that the response is zero (in ZIP that was 

probability that zero comes from zero-inflation). We will not cover Hurdle models 

here but they should be considered as a reasonable alternative for ZIP models. See 

Hadfield (2010b) for more details. 

 Finally – there are situation when we might want to model both zero-inflation 

and zero-deflation (less zeros than expected from Poisson process). These so called 

ZAP models are very useful and provide additional dimension in analyses. Similarly to 

ZIP models they are bivariate models. To fit a ZAP model one have to remember about 

two things: the formula for fixed effects should be expressed as a simultaneous 

interaction of the trait term and other terms; residuals should be in the form of 

trait:units interaction, ensuring equal amounts of overdispersion in both modelled 

traits. Below we fit simple ZAP model to the PhD data. 

> ### code block C10 

 

> m.c8 <- MCMCglmm(art~trait*(fem+mar+kid5+phd+ment), 

+ rcov=~trait:units, data=bioChemists, 

+ family="zapoisson", verbose=F) 

> summary(m.c8) 

 

 Iterations = 12991 

 Thinning interval  = 3001 

 Sample size  = 1000  



201 

 

 DIC: 3039.902  

 

 R-structure:  ~trait:units 

 

            post.mean l-95% CI u-95% CI eff.samp 

trait:units    0.3761   0.2574   0.5019    41.08 

 

 Location effects: art ~ trait * (fem + mar + kid5 + phd + ment)  

 

                       post.mean  l-95% CI  u-95% CI eff.samp  pMCMC     

(Intercept)             0.329840 -0.020848  0.635959    199.9  0.068 .   

traitza_art            -0.530032 -1.060065  0.034144    119.8  0.074 .   

femWomen               -0.201981 -0.372851 -0.043369    402.8  0.016 *   

marMarried              0.094844 -0.100929  0.261683    365.9  0.310     

kid5                   -0.140413 -0.268911 -0.010079    311.2  0.024 *   

phd                     0.013362 -0.074771  0.090847    311.3  0.746     

ment                    0.019686  0.012197  0.026658    444.5 <0.001 *** 

traitza_art:femWomen    0.023808 -0.249587  0.288446    219.8  0.840     

traitza_art:marMarried  0.145405 -0.135105  0.466840    233.6  0.324     

traitza_art:kid5       -0.062199 -0.268586  0.154656    234.3  0.552     

traitza_art:phd         0.007936 -0.137197  0.141371    132.5  0.904     

traitza_art:ment        0.029625  0.012160  0.049018    105.7  0.002 **  

--- 

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 
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Fig 74: First page of fixed-effects posteriors from a ZIP model; note poor mixing of the ZI process (traitzi_art) 

Model yields two sets of parameters: original coefficients for Poisson process and 

second set of coefficients for zero-altering process (if they’re zero – there’s no zero-

altering; if they’re negative – we detect zero-inflation, when they’re positive – there’s 

zero-deflation). Interpretation is simple – the more papers our mentor produces, the 

greater zero-deflation. 

 When thinking about ZIP/ZAP models it is important to avoid unnecessary 

complication. Although the data may look zero-inflated – simple check with observed 

and predicted by Poisson distribution numbers of zeros may not be enough (Hadfield, 

2010b). In the above example the proportion of zeros is roughly twice as large as 

predicted by simple Poisson process. However we can use simple non-zero-inflated 

model to obtain predictions about the number of zeros – and then compare them to 

the observed number of zeros in the response variable. First – we fit simple non-ZIP 

model to the data. We save the design matrix X to be able to extract predictions: 
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> ### code block C6 continued 

 

> prior.c72<-list(R=list(V=1,nu=0.002)) 

> m.c72 <- MCMCglmm(art~fem+mar+kid5+phd+ment,data=bioChemists, 

+ prior=prior.c72,family="poisson",verbose=F,saveX=T) 

 

 After that we use solutions of fixed effects and the design matrix to obtain 

point predictions and then using these predictions we generate 1000 Poisson-

distributed samples. Distribution of numbers of zeros in these samples clearly shows, 

that our data (represented by thick line) doesn’t deviate from simple Poisson 

distribution (Hadfield, 2010b) 

> ob.zer <- sum(bioChemists$art==0) #observed number of zeros 

> nr.zer <- 1:1000 #place for bootstrapped samples 

> for(i in 1:1000) { 

+ pred1 <- rnorm(915,(m.c72$X%*%m.c72$Sol[i,])@x,sqrt(m.c72$VCV[i])) 

+ nr.zer[i]<-sum(rpois(915,exp(pred1))==0) 

+ } 

> hist(nr.zer,breaks=20) 

> abline(v=ob.zer,lwd=2) 
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Fig 75: Histogram of samples from distribution of predicted numbers of zeros; black line represents observed 
number of zeros 
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Short Guide to the Most Essential R 

Functions 

 

In the table below: LOGICAL – logical test, such as is.na(data) or data==1; ACTION – an 

executable expression, such as data<-3 or lm(y~x) or 2+4; BODY – set of expressions; 

path – access path to a file; [requires NAME] – installation of the NAME package is 

reuired; FORMULA – formula object; MODEL – model object; NAME – any custom 

NAME. Anu numbers indexing lists of commands in the first column are only for 

reference and should not be used with commands provided. 

 

Function and arguments Description and details 

Operators and basic operations 

!x, x|y, x&y, xor(x,y) NOT x, x OR y, x AND y, logical exclusive OR 
on x, y 

# Comment line – not executed 

+, -, *, /, %%, %/%, %*%, ^ add, subtract, multiply, divide, modulo, 
integer division, matrix product, power 

==, >, <, >=, <=, != Equal, smaller than, larger than, smaller or 
equal, larger or equal, not equal 

A -> B Assignemnt – B gets the value of A 

abs(NAME) Absilute value 

cor(NAME1,NAME2) Correlation of elemenets of two objects 

cov(NAME1,NAME2) Covariance of elements of two objects 

exp(NAME) Exponent (e
NAME

) 

Inf, NA, NaN Infinity, missing value, not-a-number 
variable 

install.packages(“NAME”) Install a package “NAME” 

is.na(NAME) Logical test if NAME is a missing value 
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library(NAME) Load a library NAME 

list.files() List all files in the current working directory 

log(NAME) Logarithm of NAME 

ls() Display all object in the workspace 

mean(NAME) Mean of elements of name 

median(NAME) Median of elements of name 

prod(NAME) Product of elements of NAME 

quantile(NAME) Quantiles (median, minimum, maximum, 
25% and 75% quantile) 

round(x, digits=n) Round x to n digits 

save(file=”NAME”) Save workspace to file 

savehistory(file=”NAME”) Save history of commands to file 

sd(NAME) Standard deviation of elements of NAME 

search() Display the namespace and all loaded 
packages and attached objects 

setwd(path) Set working directory to path 

sqrt(NAME) Square-root of NAME 

sum(NAME) Sum of elements of NAME 

T or TRUE, F or FALSE Logical variable – true or false 

var(NAME) Variance of elements of NAME 

Vector and matrix functions; data-type functions 

as.vector(X), as.list(X), 

as.matrix(X), 

as.data.frame(X), as.array(X), 

as.numeric(X), 

as.character(X), as.logical(X) 

as.factor(X) 

Treat X as the type specified without 
changing its type 

c(a,b,c,d,...) Concatenate obejcts to a vector 

class(), attributes() Check class and attributes of an object 

cumprod(VECTOR) Cumulatiove product of elements of 
VECTOR 
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cumsum(VECTOR) Cumulative sum of elements of VECTOR 

det(MATRIX) Determinant of MATRIX 

dim(ARRAY) Returns lengths of dimensions of ARRAY 
(may also be matrix and data-frame) 

eigen(MATRIX) Eigenvalue of MATRIX 

fix(NAME) Opens window for manual edition of the 
table NAME 

is.vector(), is.list, etc. Logical test if object is of type specified 

length(VECTOR) Number of elements in a VECTOR 

max(NAME) Maximum value of NAME 

min(NAME) Minimum value in NAME 

names(NAME) Names of the elements of the vector or 
variables of the data-frame – you can 
assign new values 

order(VECTOR) Returns permutation of elements that – 
when applied as and index – sorts elements 
of VECTOR ascending 

paste(VECTOR, sep=”.”) Paste elements of VECTOR as a text string 
using sep as separators (may also be “”) 

range(VECTOR) The range of values 

rank(VECTOR) Ranks of values 

rev() Reverses a function, eg. Rev(sort(x)) sorts x 
descending 

rownames(NAME), colnames(NAME) Returns names of columnsand rows of 
thematrix or data-frame; may also be used 
for assigning names 

sort(VECTOR) Sorts elements ascending 

summary(NAME) Generic function, returns type-specific 
summary 

t(MATRIX) Transpose a matrix 

which(VECTOR, LOGICAL) Indexes of elements satysying the condition 
LOGICAL 

Reading data; manipulating tables 

$ e.g. data$name Accesses the variable using its name (in 
data-frames) 
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[] e.g. data[2,3] Accesses column, row or element; in >2D 
objects dimensions are specified in the 
order: rows, columns, …; omitting one 
dimension but retaining commas means 
that we want the whole dimension 
extracted 

apply(matrix, 1 or 2, FUNCTION) Applies FUNCTION to rows (1) or columns 
(2) of matrix 

1. attach(NAME), detach(NAME) 

2. detach(package:NAME) 
1. Attaches or detaches an object 
2. Detaches package NAME 

boxcox(NAME) [requires MASS] Box-Cox transformation of 
the data 

cbind(x,y) Column-wise bind of two objects (numbers 
of rowns must be the same) 

na.omit(NAME) Returns object with NAs removed; in data-
frame whole rows in at least one NA are 
removed 

rbind(x,y) Row-wise bind two objects; numbers of 
coulmns are the same 

read.csv(file=path) Read CSV (comma-separated) file 

read.delim2() Read file with commans as decimal 
separators; arguments as in read.table() 

read.table(path, header=T, 

sep=”\t”, skip=N) 
Read file in path, header=T sets the first 
line as names of variables, sep sets the 
character separating columns, skip skips N 
first columns 

subset(NAME, LOGICAL) Extract from data-frame NAME cases 
satisfying LOGICAL condition, eg. 
subset(data, sex==”M”) 

table(group1, group2) Create contingency table counting cases in 
grouping variables (one or two) 

tapply(data, group, FUNCTION) Apply function to data group-wise 

with(NAME, procedures) Alternative for attach; procedures use data 
from NAME without the need of specifying 
variable names by $ 
 

write.table(data, file=path, 

sep=”\t”) 
Save data to disc using filename path and 
sep as column separator 
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Writing new functions 

break Break lood and go outside to the next 
operation 

F <- function(ARGUMENTS) {BODY} Define function F, taking several 
ARGUMENTS (names, comma separated), 
executing some expressions using these 
arguments in BODY 

for (i in X) {ACTIONS} 

for (i in X) ACTION 
Loop – iterate through elements of X (may 
be vector or range), for each execute 
ACTIONS or single ACTION 

1. if (LOGICAL) {ACTIONS} 

2. if (LOGICAL) {ACTIONS} 

   else {ACTIONS} 

3. ifelse (LOGICAL,  

   ACTIONS1, ACTIONS2) 

1. Execute ACTIONS if LOGICAL is TRUE 
2. See above, if FALSE execute else 
3. Execute ACTIONS1 if LOGICAL is TRUE, 
execute ACTIONS2 otherwise 

next Stop iteration and go to the next one (does 
not break the entire loop) 

repeat {ACTION if (LOGICAL) 

break} 
Execute ACTION as long as LOGICAL 
remains false 

while (LOGICAL) {ACTIONS} Execute ACTIONS as long as LOGICAL 
remains TRUE 

Generating random data 

rep(A, length.out=B, times=C, 

each=D) 
Repeat A C times, or as many times as 
necessary to fill length.out; if each defined 
– each element of A (if it’s a vector) will be 
repeated D times; e.g. 
rep(c(1,2),times=2,each=4) yields 
1111222211112222 

rnorm(N, mean, sd), pnorm(X, 

mean, sd), qnorm(P, mean, sd), 

dnorm(X, mean, sd) 

Use normal distribution with parameters 
mean and sd to: generate N random 
samples (r); get probability x<=X (p); get 
quantile X for P(x<=X) (q); get the density 
function for X (d); see help for more 
arguments, e.g. log=T yields log 
transformed values 
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OTHER DISTRIBUTIONS  

[add r, q, p or d; first argument 

may be P, X or N]: 

t(., df), f(., df1, df2), 

binom(., size, probab),  

pois(., lambda),  

gamma(., shape, scale), chisq(., 

df), 

nbinom(., size, probab, mu),  

lnorm(., meanlog, sdlog), 

hyper(., m, n, k), 

geom(., probab), 

multinom(., size, prob), logis(., 

location, scale), exp(., rate), 

cauchy(., location, scale), 

unif(., a, b) 

 

 

 

t distribution, F, binomial, Poisson, gamma, 
Chi-squared, negative binomial, lognormal, 
hypergeometric, geometric, multinomial, 
logistic, exponential, Cauchy, uniform. See 
respective help files for more details and 
arguments. 

rTraitCont(tree, model, sigma, 

alpha) 
Simulate evolution along the tree 
phylogeny, using selected evolution model, 
sigma as standard deviation for random 
process at each branching and alpha as 
slelective force acting along the tree 

rtree() Generate random tree; see help for more 
details 

sample(A, B, replace=T or F) Choose random sample of size B from 
vector A, if replace TRUE each element will 
may be sampled more tha once; executing 
with replace=F and B>length(A) yields error 

1. seq(A, B, by=C) 

 

2. seq(A, B, length.out=C) 

1. Generate numbers between A and B with 
increment of by 
2. Generate sequence between A and B of 
the final length of length.out 
If A>B the sequence is generated in 
descending order 

unique(A) Extract all unique values from A 
 
 
 
 

Hypothesis testing 
Most testing functions accept the following arguments: alternative=”two-sided” or “less” 
or “greater” (one or two-tailed test); conf.level=0.95 specifying significance threshold. 
binom.test(n_succ, n_trials, P) Binomial test for population with P 

successes 
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chisq.test(x,y) or chisq.test(A) Accepts two vectors or a matrix 
(contingency table) 

cor.test(x,y,method) Correlation test; available methods: 
spearman, kendall, pearson 
 

fischer.test() Exact Fisher test, takes two vectors or one 
matrix 

kruskal.test() Kruskal-Wallis test; takes one list with 
groups as subvectors, two vectors – one 
with data nad one with group ids or 
formula object 

ks.test() Takes two vectors with data or one vector 
and the name of distribution to test (e.g. 
ks.test(x,pnorm) 

prop.test() Propotion test 

qqnorm(), qqline() Give quantile-quantile plot testing for 
normality and adds a line to it 

shapiro.test() Shapiro-Wilk test for normality, takes one 
vector of data 

t.test(A,B,var.equal=T or F, 

paired=T or F) 
t-test, takes two vectors of formula object 

TukeyHSD() Tukey Honest Significant Difference; takes 
anova or lm model object 

var.test() Takes two vectors and compares variances 
using F-test 

wilcox.test(A,B,paired=T or F) 

 

 

 

 

Wilcoxon signed-rank test – takes two 
vectors 

power.t.test(delta=A, sd=B, 

power=C, 

n=D, sig.level=E, alternative=F) 

Power calculation. Specify all parameters 
but one and it will be estimated based on 
the remaning ones. See help for detailed 
description of arguments. 

Bootstrapping 

a <- numeric(N) 

 

for (i in 1:N) { 

a[i] <- STATISTIC using 

sample(data,replace=T) } 

 

hist(a) 

 

quantile(a, c(0.025, 0.975)) 

Sample bootstrapping with N 
randomizations using sample function; 
STATISTIC is the expression calculating the 
value of test statistic; hist generates 
histogram of bootstrapped samples; 
quantile allow for hypothesis testing 
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FUNCTION <- function(A,i) 

STAT(A[i]) 

 

BOOT <- boot(data, FUNCTION, N) 

[requires boot] First, the FUNCTION is 
defined – it calculates the test statistic. 
Then it is bootstrapped. 

boot.ci(BOOT) Confidence intervals from bootstrapping. 
 
 

Linear models 

FORMULA 

1. y ~ x 

2. x + y 

3. x:y 

4. x*y 

5. x – y 

6. x/y 

7. 1 

8. (x + y + z)^2 

9. poly(x, 2, raw=T) or  

   x+ I(x^2) 

10. s(x) 

11. lo(x) 

1. Simple formula, with independent (x) 
and dependent (y) variable 
2. + defines additional variables 
3. colon forms interaction 
4. * fits interaction and all main effects 
5. – removes a term 
6. Slash defines nesting, from higher to 
lower level 
7. One represents intercept 
8. Fits all two factor interactions of x, y, z 
and main effects 
9. Fits quadratic term of x 
10. Uses smoother to fit x (in GAM) 
11. Uses LOESS (local regression) to fit x (in 
GAM) 

lm(FORMULA, data=NAME, weights=A) Linear model for data, weights optional 

predict(MODEL, newdata) Prediction from model; if newdata specified 
(as additional data-frame) prdictions for 
new values are made 

resid(MODEL) Residuals from model 

update(MODEL, ~. –A) Update model’s formula 

summary(MODEL) Summary of model 

plot(MODEL) Diagnostic plots 

anova(MODEL) ANOVA table for model (if supported) 

anova(MODEL1, MODEL2) Compare two models using ANOVA 

gam(FORMULA, data) [requires mgcv] Additive linear models 

tree(FORMULA, data) [requires tree] Tree regression models 

plot(TREEMODEL), text(TREEMODEL)( Plots tree regression and adds text labels 
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step(MODEL) Stepwise simplification of MODEL based on 
AIC 

contrasts(DATA$FACTOR) Displays contrasts for factor variable 

contrasts(DATA$FACTOR) <- metrix 

of contrasts 
Sets contrasts for factor variable 

summary.lm(MODEL) Regression-like summary of a model 

summary.aov(MODEL) ANOVA-like summary of a model 

glm(FORMULA, data=NAME,  

family=distribution name) 
Generalized linear model with distribution 
defined by family; possible values: 
gaussian, poisson, binomial, exponential, 
gamma, quasibinomial, quasipoisson. 

MCMCglmm( 

 
Fits generalized linear mixed models using 
Markov Chain Monte Carlo method 

y ~ fixed effects OR 

cbind(y, z) ~ trait + fixed 

effects, 

Fixed effects formula; cbind() used if more 
than two response variables; trait is a 
restricted name indexing response 
variables in multivariate models 

random=~a + b OR 

 

random=~idh(fixed):a + 

us(fixed):b OR 

 

random=~idh(trait):a + 

us(trait):b, 

Random effects formula; idh used for 
covariance structures with covariances set 
to zero; us used for (co)variance structures 
with covariances not fixed; in random 
effects – animal used for additive 
genetic/phylogenetic effect in animal 
models; be sure to create proper structure 
in multivariate models (hence the ‘trait’ 
effect) 

rcov=~idh(fixed):units, Optional, defines residual (co)variance 
structure 

data=NAME, Name of the data object 

pedigree=NAME, Optional, name of the pedigree 
datafile/phylogenetic tree from ape() 

mev=NAME, Optional, in meta-analysis defines vector of 
measurements error 

family=NAMES OR 

family=c(NAME,NAME), 
Defines the type of distribution; c() used 
when more than one response; not 
necessary if gaussian 

prior=NAME, Defines the name of the prior 

saveX=T or F, saveZ=T or F, Saves (if T) design matrices for fixed and 
random effects 

pr =T or F, pl=T or F) Saves (if T) random effects (BLUPs) and 
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latent variables (fitted values on link scale) 
 

my_prior <- 

list(R=list(V=1,nu=0.002), 

B=list(mu=0, V=1e+06), 

G=list(G1=list(V=1,nu=0.002), 

G2=list(V=1,fix1), 

G3=list(V=1,nu=0.002,alpha.mu=0, 

alpha.V=1000))) 

Prior for MCMCglmm; R – priors for 
residual variance; G – priors for random 
effects (as many as there are random 
terms); B – priors for fixed effects (if more 
than one: mu=c(0,0,0), V=diag(3)*1e+06); B 
is optional and required only in difficult 
models (such as binary data with large 
separation; see relevant chapters) 

fitted(MODEL) Returns values fitted by model (equal to 
predict() with no newdata argument) 

lmer( 

y ~ x + y + (1|a) + (fixed|b), 

family=distribution name, 

data=NAME) 

Fits (generalized) linear mixed models using 
REML; random effects formed by (X|...) 

mcmcsamp(MODEL from lmer) [requires arm] Uses lmer object to create 
MCMC samples for estimated parameters 

Graphics and plots 

plot(x,y OR y~x OR object, 

 
Generic function for creating plots; takes 
two vectors (x and y variables), a formula 
object or a (model) object.  

main, Graph title 

xlab, x axis label 

ylab, y axis label 

xlim, Limits for x axis in the form of c(A,B) 

ylim, Limits for y axis 

cex.axis, Font size for axes’ ticks in points 

cex.lab, Font size for axes’ labels in points 

cex.main, Font size for graph’s label 

cex, Size of graph’s points 

pch, Type of points (see points() function) 

lty, Line type for line plots (see lines()) 

lwd) Line width in pixels 

abline(a=X,b=Y) 

abline(h=A) 
Adds line to a plot, by defining slope and 
intercept (a,b), horizontal line for Y=A, 
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abline(v=B) 

abline(lm model) 
vertical line for X=B or line from a lm object 

boxplot(Y~X) Creates boxplot fro data given group(X)-
wise 

hist(X, freq=T or F, breaks=N) Histogram (with frequencies if freq=T), with 
custom number of bars (breaks) 

identify(x,y) Identifies points on the graph 

legend(x,y,legend) Adds a legend to the graph 

library(lattice) and 

library(gplot) 
Two libraries for high-level specialized 
graphs (see manuals and help files) 

lines(x,y,lty=N) Adds lines to a plot. Types of lines (lty): 
lty=1 solid line 
lty=2 dashed line 
lty=3 dotted line 
lty=4 dash-and-dot line 
lty=5 broken line 
lty=6 broken-and-dot line 
 
 

locator(x) Identifies points on the graph 

par( Sets graphical parameters (see figure 
below) 

font, 1-standard, 2-italic, 3-bold, 4-bold italic, 5-

 
mar, mai, Width of margins in Inches or lines, as four-

element vectors 
mfrow, Sets number of columns and rows on the 

plot 
oma, omi, Widths of outer margins in Inches or lines, 

as four-element vectors 
din, fin, pin) Length and width of the image (in Inches or 

lines) as two-element vectors 
mfg Position of active figure in device with 

multiple figures 
persp(x,y,z) 3D plot, with x and y independent variables 

and one dependent variable z 
png(file=path) PLOTTING dev.off() 

jpeg(file=path) PLOTTING 

dev.off() 

pdf(file=path) PLOTTING dev.off() 

 

Using devices for saving graphs to graphic 
files; can also be done using Save As menu 
in the R Console (Windows/Mac OS) 
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points(x, pch=N) Adds points to the graph. Type of pints 
(pch): 

 

rainbow(N), heat.colors(N), 

terrain.colors(N), cm.colors(N) 
Generates color vectors of size = N 

 

 

 

 

 

 

 

 

din[1] 

din[2] 

mai[1] 

mai[2] 

fin[2] 

fin[1] 

mai[3] 

mai[4] 

mfrow=c(1,2) omi[1] 

omi[2] 

omi[3] 

omi[4] 

pin[1] 
pin[2] 

din[2] 
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additive genetic variance, 86 
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animal model, 86 
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anova (function), 62, 65, 83 

ANOVA (test), 69, 72 

aov, 62, 65, 72, 73, 78, 82, 167 

ape (package), 12, 13, 135, 136, 138, 

139, 144, 167 

array, 23 

attach (function), 31 

autocorrelation, 66, 67, 114, 120, 128, 

143 

B 

Bayesian statistics, 62, 76, 78, 79, 83, 

105, 108, 111, 117 

belief parameter (in MCMCglmm), 84, 88, 

108 

binary data, 12, 123, 126, 136, 156, 157, 

167 

binomial distribution, 49, 53, 75, 79, 90, 

91, 113, 121, 127, 129, 155, 156, 164, 

167 

biplot, 94 

boot (library), 58 

bootstrapping, 56, 57 

C 

classical tests, 57 

cluster analysis, 97 

comparative analysis, 139 

confidence band, 63 

confidence intervals, 68, 84, 85, 89 

console, 12, 13 

contour plot, 106 

contrasts, 72 

covariance matrix, 83, 84 

credible interval, 77 

curvilinear data, 68 

D 

data diagnostics, 50 

data-frame, 27 

DIC, 77, 79, 84, 88, 89, 119, 121, 127, 

132, 142, 145, 150, 157 

 

 

 

 

distribution, 12, 22, 49, 51, 52, 53, 57, 61, 

66, 67, 75, 76, 77, 78, 85, 86, 88, 89, 

90, 91, 107, 108, 110, 111, 112, 113, 

115, 124, 133, 135, 138, 143, 155, 

157, 164, 165, 167, 168 

E 

evolution models, 138 

F 

factor analysis, 96 
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fixed effects, 62, 79, 80, 82, 85, 108, 117, 

118, 151, 157, 167 

formula, 61 

functions, 16 

G 

gam (function), 62 

general additive models, 67 

generalized linear models, 73 

genetic correlation, 88, 89, 141 

ggplot2 (package), 43 

glm (function), 62, 74, 75, 76, 78, 80, 

107, 115, 127, 167 

goodness of fit, 61, 62, 65, 153 

H 

hclust (function), 102 

heritability, 85, 88, 89, 90, 141 

hierarchical clustering, 101 

high-level plotting functions, 36 

histogram, 37, 38, 58, 168 

homogeneity, 53, 65, 74, 153 

hypothesis, 52, 54, 55, 57, 66, 89, 97, 

129, 166 

hypothesis testing, 49 

I 

independent comparisons, 73 

influence, 66 

interaction, 61, 69, 82, 86, 88, 129, 157, 

166 

intraclass correlation, 124 

K 

kmeans (function), 97, 98, 99 

L 

likelihood, 62, 79, 81, 83, 105, 106, 107, 

108, 113, 138 

likelihood ratio, 79, 81, 83 

link function, 74, 75, 115 

list (object), 25 

lm, 62 

lmer, 22, 62, 78, 79, 80, 81, 82, 83, 84, 

86, 113, 129, 150, 168 

loess (function), 62 

logical subscript, 20 

low-level functions plotting functions, 40 

M 

marginal distribution, 110 

Markov Chain 

MCMC, 77, 85, 90, 110, 113, 114, 

155, 168 

Markov Chain (method), 62, 76, 79, 108, 

113, 167 

matrix (object), 24 

Maximum Likelihood (method), 77 

MCMCglmm, 62, 77, 78, 79, 82, 83, 84, 

86, 87, 88, 89, 90, 91, 92, 110, 111, 

113, 114, 115, 116, 117, 118, 119, 

120, 121, 122, 123, 127, 128, 129, 

130, 131, 135, 139, 140, 141, 142, 

144, 146, 148, 149, 155, 156, 157, 167 

diagnostics, 113 

meta-analysis, 141 

mixed model, 79, 80, 81, 82, 86 

multiple regression, 67, 69 

N 

NaN, 30 

nonlinearity, 67 

non-parametric tests, 57 

normal distribution, 49, 67 

normality, 51, 52, 65, 73, 165 

O 

orthogonal, 72 

overdispersion, 75, 76, 79, 90, 91, 113, 

115, 119, 157 

additive, 76 

multiplicative, 76 
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P 

PCA, See principal component analysis 

phylogenies, 135, 139 

Newick format, 136 

phylogenetically independent 

contrasts, 139 

trees, 138 

Poisson distribution, 22, 49, 74, 75, 76, 

77, 79, 91, 113, 115, 116, 119, 155, 

156, 157, 158, 164 

posterior distribution, 77, 110, 112 

principal component analysis, 93 

prior 

improper, 84, 108, 112, 133 

parameter expanded priors, 155 

prior (in MCMCglmm), 84 

Priors, 108 

Q 

q-q plot, 51 

quadratic term, 68 

R 

random effects, 61, 77, 78, 79, 80, 82, 

84, 86, 87, 88, 89, 90, 112, 113, 114, 

117, 118, 147, 148, 150, 153, 167, 168 

random regression, 146 

regression, 42, 44, 45, 61, 62, 63, 68, 71, 

72, 74, 78, 105, 125, 146, 166, 167 

regression tree, 99 

REML, 62, 78, 79, 80, 81, 82, 85, 86, 90, 

107, 108, 111, 113, 150, 168 

residual deviance, 76 

residuals, 11, 63, 66, 67, 71, 74, 77, 78, 

82, 88, 91, 115, 116, 119, 120, 140, 

142, 151, 157 

robust regression, 71 

S 

sample (function), 22 

sort (function), 20 

statistical modeling, 61 

T 

test 

power, 56 

Shapiro-Wilk, 51 

t-Student, 52, 55 

Wilcoxon signed rank, 54 

tree regression, 69 

V 

variance, 20, 65, 73, 74, 75, 76, 77, 79, 

81, 82, 83, 84, 85, 86, 88, 89, 90, 91, 

94, 106, 108, 109, 110, 111, 112, 115, 

117, 119, 123, 124, 125, 126, 129, 

130, 132, 133, 135, 141, 142, 143, 

148, 150, 151, 152, 153, 155, 156, 167 

vectors, 19 

W 

working directory, 15, 16, 161, 162 

workspace, 13, 15, 16, 41, 161, 162 

Z 

zero-inflated, 77, 79, 156, 157, 158 

 


