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[How to use these Notes?] 

Here you’ll find brief instructions for what will be done during the workshop. This is not a 

handbook or an academic script. Together with this file you’ll have also a command file 

containing all codes used during the workshop. In general – we will try to work interactively, so 

that everybody could benefit as much as possible. It is important to realize that – although we’ll 

learn how to use presented methods practically – we’ll also use toy data and simulations to “feel” 

presented methods and become confident about what they really do. 

 

In the text, I provide outputs from executing all commands, except graphics – plots are not 

included. So – every time a plotting function is invoked expect to see the picture on your default 

output (screen) You can find code for all exercises in the “codeblocks” files supplies with this 

text. You’ll also get all necessary external files such as data files. All codes have been tested and 

should work without problems but ensure that all supplied files are inside your working 

directory. I assume all should have internet access during the classes but in case you didn’t have 

– please find attached the list of all packages that will have to be installed to do the exercises. 

And finally – please forgive me any typos and spelling mistakes. Quite often I have problems 

writing correctly in my own language… 

 

To avoid any permanent alterings of default graphical parameters do the following: 

> par() -> opar 

> par(opar) #to restore 

 

# in R it means comment – I will frequently use this to introduce 

comments inside the code 

 

[Credits] 

Parts of this workshop are based (inevitably) on the work of Jarrod Hadfield – author and 

maintainer of MCMCglmm package. I’m also using freely available datasets from several web-

pages (see References), and two books on statistics: Crawley’s “The R book” and Manly’s 

“Multivariate statistical methods”. 

 

[Note for experienced R users] 

I’m aware that every person works in its own personalized way. Most of what’s going to be 

presented here can be done under every philosophy of working with R. I’m not used to working 

with R Editor or any graphical interface extensions – but if you are feel free to work the way you 

did so far. As most users use Windows – we’ll work in this environment. If you’re a Linux-mad 

person (like me;)) you shouldn’t have any problems following the workshop –just remember 

about different formatting of file paths. 
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R’s must-knows 

I assume that most of you (all of you) had some previous experience with R. Here I’m going to 

provide some basics and useful information that should make some of our further code clearer. 

This whole part will be in the form of R code – so look for comments prefixed by #. 

> ###### R's must-knows ###### 

 

> #always remember to set up your working directory before starting 

> #any analyses 

 

> setwd("C:/R") 

 

> #R works on vectors so everything, even single number is a vector 

> #vectors on higher-order structures such as matrices can be 

> #added, multiplied, etc. in the same way we do this with simple 

> #numbers 

 

> vector <- 1:20 

> vector 

 [1]  1  2  3  4  5  6  7  8  9 10 11 12 13 14 15 16 17 18 19 20 

> matr <- matrix(vector,4,5) 

> matr 

     [,1] [,2] [,3] [,4] [,5] 

[1,]    1    5    9   13   17 

[2,]    2    6   10   14   18 

[3,]    3    7   11   15   19 

[4,]    4    8   12   16   20 

> matr*3.5 

     [,1] [,2] [,3] [,4] [,5] 

[1,]  3.5 17.5 31.5 45.5 59.5 

[2,]  7.0 21.0 35.0 49.0 63.0 

[3,] 10.5 24.5 38.5 52.5 66.5 

[4,] 14.0 28.0 42.0 56.0 70.0 

> sqrt(vector) 

 [1] 1.000000 1.414214 1.732051 2.000000 2.236068 2.449490 2.645751 

2.828427 3.000000 3.162278 3.316625 3.464102 3.605551 3.741657 

[15] 3.872983 4.000000 4.123106 4.242641 4.358899 4.472136 

 

> #several functions work on vectors in the way that they extract 

> #some simple number from them 

 

> mean(vector) 

[1] 10.5 

> sum(vector) 

[1] 210 

> colSums(matr) 

[1] 10 26 42 58 74 

> rowMeans(matr) 

[1]  9 10 11 12 
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> #we can name elements of matrices and vectors 

>  

> colnames(matr) <- LETTERS[1:5] 

> rownames(matr) <- LETTERS[15:18] 

> matr 

  A B  C  D  E 

O 1 5  9 13 17 

P 2 6 10 14 18 

Q 3 7 11 15 19 

R 4 8 12 16 20 

>  

> #other useful types of data structures are lists 

> #they can contain data of different types (text,numbers,etc) 

> #whereas vector convert data to one type or display error 

 

> vector <- c(1,2,"word",c(22,33)) 

> list1 <- list(1,2,"word",c(22,33)) 

> vector 

[1] "1"    "2"    "word" "22"   "33"   

> list1 

[[1]] 

[1] 1 

 

[[2]] 

[1] 2 

 

[[3]] 

[1] "word" 

 

[[4]] 

[1] 22 33 

 

 

> #mostly used data structures in R are data frames 

> #you can load your own data to R like this: 

> #mydata <- read.table("file",sep="\t",head=T) for .-delimited decimals 

> #mydata <- read.delim2("file",sep="\t",head=T) for ,-delimited decimals 

> #in both examples data are separated by Tabs and first row contains names 

> #you can also use built-in data from R 

> data(ChickWeight) 

> summary(ChickWeight) 

     weight           Time           Chick     Diet    

 Min.   : 35.0   Min.   : 0.00   13     : 12   1:220   

 1st Qu.: 63.0   1st Qu.: 4.00   9      : 12   2:120   

 Median :103.0   Median :10.00   20     : 12   3:120   

 Mean   :121.8   Mean   :10.72   10     : 12   4:118   

 3rd Qu.:163.8   3rd Qu.:16.00   17     : 12           

 Max.   :373.0   Max.   :21.00   19     : 12           

                                 (Other):506           

> names(ChickWeight) 

[1] "weight" "Time"   "Chick"  "Diet"   
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> #remember that in R rows are indexed first, then columns 

> #you can also refer to columns using their names 

> #here we simultaneously select columns and then extract some subset 

> #of their data using indexes on vectors 

> ChickWeight[,1][1:10] 

 [1]  42  51  59  64  76  93 106 125 149 171 

> ChickWeight[2,] 

Grouped Data: weight ~ Time | Chick 

  weight Time Chick Diet 

2     51    2     1    1 

> ChickWeight$Diet[205:220] 

 [1] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 

Levels: 1 2 3 4 

 

> matr[,2] #access 2nd column of the matrix but loosing its dimensions 

O P Q R  

5 6 7 8  

> matr[,2,drop=F] #keep right dimensions 

  B 

O 5 

P 6 

Q 7 

R 8 

>  

> #sometimes instead of numerical indexes logical subscripts can be used 

 

> ChickWeight[ChickWeight$Diet=="A",][1:20,] 

Grouped Data: weight ~ Time | Chick 

   weight Time Chick Diet 

1      42    0     1    A 

2      51    2     1    A 

3      59    4     1    A 

4      64    6     1    A 

5      76    8     1    A 

6      93   10     1    A 

7     106   12     1    A 

8     125   14     1    A 

9     149   16     1    A 

10    171   18     1    A 

11    199   20     1    A 

12    205   21     1    A 

13     40    0     2    A 

14     49    2     2    A 

15     58    4     2    A 

16     72    6     2    A 

17     84    8     2    A 

18    103   10     2    A 

19    122   12     2    A 

20    138   14     2    A 

> ChickWeight[ChickWeight$Diet=="A"&ChickWeight$Time==18,] 

Grouped Data: weight ~ Time | Chick 
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    weight Time Chick Diet 

10     171   18     1    A 

22     187   18     2    A 

34     187   18     3    A 

46     154   18     4    A 

58     199   18     5    A 

70     160   18     6    A 

82     250   18     7    A 

94     134   18     8    A 

105    100   18     9    A 

117    112   18    10    A 

129    184   18    11    A 

141    185   18    12    A 

153     81   18    13    A 

165    248   18    14    A 

192    123   18    17    A 

206    120   18    19    A 

218    107   18    20    A 

> ix<-which(ChickWeight$Diet=="B"& 

+ (ChickWeight$Time==10|ChickWeight$Time==12)) 

> ix 

 [1] 226 227 238 239 250 251 262 263 274 275 286 287 298 299 310 

[16] 311 322 323 334 335 

> ChickWeight[ix,] 

Grouped Data: weight ~ Time | Chick 

    weight Time Chick Diet 

226    163   10    21    B 

227    217   12    21    B 

238     95   10    22    B 

239    108   12    22    B 

250    103   10    23    B 

251    127   12    23    B 

262     68   10    24    B 

263     70   12    24    B 

274    124   10    25    B 

275    146   12    25    B 

286    114   10    26    B 

287    136   12    26    B 

298    100   10    27    B 

299    115   12    27    B 

310    114   10    28    B 

311    145   12    28    B 

322    106   10    29    B 

323    134   12    29    B 

334     98   10    30    B 

335    115   12    30    B 

 

> #as you probably suspect negative indexes result in deletion of 

> #respective columns/rows 

 

> #as you've noticed some data are in the form of categorical variables 

> #called factors 
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> ChickWeight$Diet[1:10] 

 [1] A A A A A A A A A A 

Levels: A B C D 

> levels(ChickWeight$Diet) 

[1] "A" "B" "C" "D" 

> levels(ChickWeight$Diet)<-LETTERS[1:4] 

> summary(ChickWeight) 

     weight           Time           Chick     Diet    

 Min.   : 35.0   Min.   : 0.00   13     : 12   A:220   

 1st Qu.: 63.0   1st Qu.: 4.00   9      : 12   B:120   

 Median :103.0   Median :10.00   20     : 12   C:120   

 Mean   :121.8   Mean   :10.72   10     : 12   D:118   

 3rd Qu.:163.8   3rd Qu.:16.00   17     : 12           

 Max.   :373.0   Max.   :21.00   19     : 12           

                                 (Other):506           

 

> #you can use a set of functions to change and query the types 

> #of objects 

 

> as.character(ChickWeight$Diet)[205:220] 

 [1] "A" "A" "A" "A" "A" "A" "A" "A" "A" "A" "A" "A" "A" "A" "A" 

[16] "A" 

> as.numeric(ChickWeight$Chick)[205:220] 

 [1] 10 10 10 10  6  6  6  6  6  6  6  6  6  6  6  6 

> is.factor(ChickWeight$Diet) 

[1] TRUE 

> is.numeric(ChickWeight$Chick) 

[1] FALSE 

 

> #NA is a special type of data where there's no value 

> #to test if sth is NA you should use is.na(x) instead of x==NA 

 

> #manipulating large datasets is easy thanks to several automating 

> #functions 

 

> #1 combine two matrices/vectors/data frames 

 

> cbind(matr,4*matr) #column-wise 

  A B  C  D  E  A  B  C  D  E 

O 1 5  9 13 17  4 20 36 52 68 

P 2 6 10 14 18  8 24 40 56 72 

Q 3 7 11 15 19 12 28 44 60 76 

R 4 8 12 16 20 16 32 48 64 80 

> rbind(matr,4*matr) #row-wise 

   A  B  C  D  E 

O  1  5  9 13 17 

P  2  6 10 14 18 

Q  3  7 11 15 19 

R  4  8 12 16 20 

O  4 20 36 52 68 
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P  8 24 40 56 72 

Q 12 28 44 60 76 

R 16 32 48 64 80 

 

> #2 apply some function column- or row-wise in matrix or data frame 

 

> apply(matr,1,var) 

 O  P  Q  R  

40 40 40 40  

> apply(matr,2,mean) 

   A    B    C    D    E  

 2.5  6.5 10.5 14.5 18.5  

 

> #3 apply a function group-wise 

 

> tapply(ChickWeight$weight,ChickWeight$Diet,mean) 

       A        B        C        D  

102.6455 122.6167 142.9500 135.2627  

> tapply(ChickWeight$weight,ChickWeight$Chick,var) 

         18          16          15          13           9  

    8.00000    28.90476   107.83929   266.51515   424.69697  

         20          10           8          17          19  

  704.62879   831.90152  1064.00000  1033.54545  1406.38636  

          4           6          11           3           1  

 1905.33333  2201.29545  3156.26515  3686.15152  3332.96970  

         12           2           5          14           7  

 3701.35606  3881.90152  5237.15152  7323.69697  9129.27273  

         24          30          22          23          27  

  107.29545  1774.81818  1752.20455  2256.44697  2758.62879  

         28          26          25          29          21  

 4777.17424  5263.09091  6520.26515  8348.51515 12209.00000  

         33          37          36          31          39  

 1862.02273  2293.72727  5117.35606  5310.99242  6090.02273  

         38          32          40          34          35  

 7722.42424  8924.44697  9426.26515 11726.15152 15234.15152  

         44          45          43          41          47  

 1532.10000  2990.26515  3818.36364  3379.35606  3544.62879  

         49          46          50          42          48  

 4750.93182  4803.53788  6527.18182  7139.53788  9810.42424  

 

> aggregate(ChickWeight$weight,list(ChickWeight$Diet),mean) 

  Group.1        x 

1       A 102.6455 

2       B 122.6167 

3       C 142.9500 

4       D 135.2627 

 

> #4 build a contingency table 

 

> table(ChickWeight$Diet,ChickWeight$Chick) 

    

    18 16 15 13  9 20 10  8 17 19  4  6 11  3  1 12  2  5 14  7 
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  A  2  7  8 12 12 12 12 11 12 12 12 12 12 12 12 12 12 12 12 12 

  B  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0 

  C  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0 

  D  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0 

    

    24 30 22 23 27 28 26 25 29 21 33 37 36 31 39 38 32 40 34 35 

  A  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0 

  B 12 12 12 12 12 12 12 12 12 12  0  0  0  0  0  0  0  0  0  0 

  C  0  0  0  0  0  0  0  0  0  0 12 12 12 12 12 12 12 12 12 12 

  D  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0 

    

    44 45 43 41 47 49 46 50 42 48 

  A  0  0  0  0  0  0  0  0  0  0 

  B  0  0  0  0  0  0  0  0  0  0 

  C  0  0  0  0  0  0  0  0  0  0 

  D 10 12 12 12 12 12 12 12 12 12 

> #--------------------------------------- 

> #houskeeping 

> rm(matr) #removes selected object 

> attach(ChickWeight) #attaches objects so that variables can be called 

> detach(ChickWeight) #detaches object 

> #attach is useful but can be dangerous - you can use with() instead 

> attach(ChickWeight) 

> ix<-which(Diet=="B"&(Time==10|Time==12)) 

> detach(ChickWeight) 

> #OR 

> with(ChickWeight,ix<-which(Diet=="B"&(Time==10|Time==12))) 

> #not very longer and much safer ;) 

>  

> library(lme4) #loads library 

 

Attaching package: 'lme4' 

 

The following object(s) are masked from 'package:coda': 

 

    HPDinterval 

 

The following object(s) are masked from 'package:stats': 

 

    AIC 

 

> detach(package:lme4) #unloads library 

 

> save(file="filename") #saves current workspace 

> savehistory(file="filename2") #saves history of commands 

 

> ls() #lists all objects 

 [1] "ChickWeight"   "cw"            "cw2"           

 [4] "ix"            "list1"         "Loblolly"      

 [7] "m1"            "m11"           "m2"            

[10] "m3"            "m4"            "matr2"         

[13] "Orange"        "OrchardSprays" "vector"        
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> #--------------------------------------- 

> #generating useful data 

> seq(1,10,0.5) 

 [1]  1.0  1.5  2.0  2.5  3.0  3.5  4.0  4.5  5.0  5.5  6.0  6.5 

[13]  7.0  7.5  8.0  8.5  9.0  9.5 10.0 

> seq(10,1,-1) 

 [1] 10  9  8  7  6  5  4  3  2  1 

 

> rep(c(1,2),times=3) 

[1] 1 2 1 2 1 2 

> rep(c(1,2),each=3) 

[1] 1 1 1 2 2 2 

> rep(c(1,2),each=3,times=3) 

 [1] 1 1 1 2 2 2 1 1 1 2 2 2 1 1 1 2 2 2 

 

> gl(4,5,labels=c("A","B","C","D")) 

 [1] A A A A A B B B B B C C C C C D D D D D 

Levels: A B C D 

> sample(1:100,10) 

 [1] 97 30 49 75  1 35 73 77 52 67 

> sample(1:10,10,rep=T) 

 [1] 2 1 2 4 5 9 3 2 9 5 

 

> #operations on distributions 

> rnorm(10,mean=2,sd=sqrt(2)) #10 numbers from normal distribution 

 [1]  4.2036313  2.7054377  3.6804485  3.2729313  3.6927785 

 [6]  0.8945778  1.0215094  2.3764460  3.5724806 -0.4478660 

> pnorm(2,mean=2,sd=sqrt(2)) #proportion of distribution to to X 

[1] 0.5 

> qnorm(0.5,mean=2,sd=sqrt(2)) #quantile of distribution for P 

[1] 2 

> dnorm(0.5, mean=2, sd=sqrt(2)) #density of distribution at X 

[1] 0.1607328 

 

> #most popular distribution are: 

> #norm - gaussian 

> #pois - poisson 

> #binom - binomial 

> #gamma - gamma 

> #beta - beta 

> #chisq - Chi squared 

> #unif - uniform 

> #logis - logistic 

> #lnrom - log-normal 

> #--------------------------------------- 

 

> #basic analyses and interpretation 

> #linear model - gaussian data 

> m1<-lm(weight~Time*Diet,data=ChickWeight) 

> #here we add higher-order terms to allow for curvilinear trends 

> m2<-lm(weight~poly(Time,2,raw=T)*Diet,data=ChickWeight) 
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> summary(m1) 

 

Call: 

lm(formula = weight ~ Time * Diet, data = ChickWeight) 

 

Residuals: 

     Min       1Q   Median       3Q      Max  

-135.425  -13.757   -1.311   11.069  130.391  

 

Coefficients: 

            Estimate Std. Error t value Pr(>|t|)     

(Intercept)  30.9310     4.2468   7.283 1.09e-12 *** 

Time          6.8418     0.3408  20.076  < 2e-16 *** 

DietB        -2.2974     7.2672  -0.316  0.75202     

DietC       -12.6807     7.2672  -1.745  0.08154 .   

DietD        -0.1389     7.2865  -0.019  0.98480     

Time:DietB    1.7673     0.5717   3.092  0.00209 **  

Time:DietC    4.5811     0.5717   8.014 6.33e-15 *** 

Time:DietD    2.8726     0.5781   4.969 8.92e-07 *** 

--- 

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1  

 

Residual standard error: 34.07 on 570 degrees of freedom 

Multiple R-squared: 0.773,      Adjusted R-squared: 0.7702  

F-statistic: 277.3 on 7 and 570 DF,  p-value: < 2.2e-16  

 

> summary.aov(m1) 

             Df  Sum Sq Mean Sq  F value    Pr(>F)     

Time          1 2042344 2042344 1759.757 < 2.2e-16 *** 

Diet          3  129876   43292   37.302 < 2.2e-16 *** 

Time:Diet     3   80804   26935   23.208 3.474e-14 *** 

Residuals   570  661532    1161                        

--- 

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1  

> summary(m2) 

 

Call: 

lm(formula = weight ~ poly(Time, 2, raw = T) * Diet, data = ChickWeight) 

 

Residuals: 

     Min       1Q   Median       3Q      Max  

-143.152  -10.030   -0.732    8.232  123.298  

 

Coefficients: 

                              Estimate Std. Error t value 

(Intercept)                   38.36142    5.65497   6.784 

poly(Time, 2, raw = T)1        4.47324    1.25962   3.551 

poly(Time, 2, raw = T)2        0.11202    0.05742   1.951 

DietB                         -0.68130    9.74243  -0.070 

DietC                          0.46254    9.74243   0.047 

DietD                         -1.29627    9.75110  -0.133 

poly(Time, 2, raw = T)1:DietB  1.33695    2.14254   0.624 
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poly(Time, 2, raw = T)2:DietB  0.01827    0.09677   0.189 

poly(Time, 2, raw = T)1:DietC  0.58427    2.14254   0.273 

poly(Time, 2, raw = T)2:DietC  0.18428    0.09677   1.904 

poly(Time, 2, raw = T)1:DietD  3.28497    2.15223   1.526 

poly(Time, 2, raw = T)2:DietD -0.02018    0.09770  -0.207 

                              Pr(>|t|)     

(Intercept)                   2.96e-11 *** 

poly(Time, 2, raw = T)1       0.000415 *** 

poly(Time, 2, raw = T)2       0.051574 .   

DietB                         0.944274     

DietC                         0.962150     

DietD                         0.894292     

poly(Time, 2, raw = T)1:DietB 0.532877     

poly(Time, 2, raw = T)2:DietB 0.850357     

poly(Time, 2, raw = T)1:DietC 0.785182     

poly(Time, 2, raw = T)2:DietC 0.057375 .   

poly(Time, 2, raw = T)1:DietD 0.127491     

poly(Time, 2, raw = T)2:DietD 0.836412     

--- 

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1  

 

Residual standard error: 33.53 on 566 degrees of freedom 

Multiple R-squared: 0.7817,     Adjusted R-squared: 0.7774  

F-statistic: 184.2 on 11 and 566 DF,  p-value: < 2.2e-16  

 

> summary.aov(m2) 

                             Df  Sum Sq Mean Sq F value 

poly(Time, 2, raw = T)        2 2064290 1032145 918.082 

Diet                          3  129682   43227  38.450 

poly(Time, 2, raw = T):Diet   6   84264   14044  12.492 

Residuals                   566  636320    1124         

                               Pr(>F)     

poly(Time, 2, raw = T)      < 2.2e-16 *** 

Diet                        < 2.2e-16 *** 

poly(Time, 2, raw = T):Diet 3.031e-13 *** 

Residuals                                 

--- 

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1  

> #note that results in LM output are presented as intercept (global mean 

> #containing alphabetically first levels from fixed effects, and for 

> #continuous predictors = 0) and then slopes for 

> #covariates and differences between intercept  

> #and each level of categorical predictors 

 

> #if you want - youcan set-up contrasts to make specific comparisons 

> #let's assume we'd like to compare: diet 1 with 2,3,4 and diet 3 and 4 

> contrasts(ChickWeight$Diet)<-cbind(c(-3,1,1,1),c(0,0,-1,1)) 

> contrasts(ChickWeight$Diet) 

  [,1] [,2]          [,3] 

A   -3    0  1.665335e-16 

B    1    0 -8.164966e-01 

C    1   -1  4.082483e-01 
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D    1    1  4.082483e-01 

> #R generated additional contrast to ensure orthogonality of comparisons 

> #we can force two contrasts but be careful using contrasts that are 

> #non-orthogonal! 

> contrasts(ChickWeight$Diet,how.many=2)<-cbind(c(-3,1,1,1),c(0,0,-1,1)) 

> contrasts(ChickWeight$Diet) 

  [,1] [,2] 

A   -3    0 

B    1    0 

C    1   -1 

D    1    1 

> m3<-lm(weight~Time*Diet,data=ChickWeight) 

> summary(m3) 

 

Call: 

lm(formula = weight ~ Time * Diet, data = ChickWeight) 

 

Residuals: 

      Min        1Q    Median        3Q       Max  

-159.9001  -13.8325   -0.5892   11.9680  130.3913  

 

Coefficients: 

            Estimate Std. Error t value Pr(>|t|)     

(Intercept)  27.2188     2.8414   9.579  < 2e-16 *** 

Time          9.1361     0.2230  40.968  < 2e-16 *** 

Diet1        -1.2374     1.3973  -0.886  0.37622     

Diet2         6.4049     4.2881   1.494  0.13582     

Time:Diet1    0.7648     0.1110   6.890 1.48e-11 *** 

Time:Diet2   -0.8761     0.3360  -2.608  0.00935 **  

--- 

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1  

 

Residual standard error: 34.96 on 572 degrees of freedom 

Multiple R-squared: 0.7601,     Adjusted R-squared: 0.758  

F-statistic: 362.5 on 5 and 572 DF,  p-value: < 2.2e-16  

 

> summary.aov(m3) 

             Df  Sum Sq Mean Sq  F value    Pr(>F)     

Time          1 2042344 2042344 1670.757 < 2.2e-16 *** 

Diet          2  106275   53138   43.470 < 2.2e-16 *** 

Time:Diet     2   66721   33360   27.291 4.783e-12 *** 

Residuals   572  699216    1222                        

--- 

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1  

>  

> #contrasts are compatible with most modelling functions 

> #we can use them even with mixed models 

> library(MCMCglmm) 

> m4 <- MCMCglmm(weight~Diet, random=~Chick,data=ChickWeight,verbose=F) 

> summary(m4) #2 contrasts instead of 3 levels for Diet 2,3,4 

 

 Iterations = 12991 



Szymon Drobniak – Advanced approaches to linear modeling and multivariate statistics in R  

Uppsala, 18-21.01.2010 

13 

 

 Thinning interval  = 3001 

 Sample size  = 1000  

 

 DIC: 6534.775  

 

 G-structure:  ~Chick 

 

      post.mean l-95% CI u-95% CI eff.samp 

Chick     317.3    22.11    622.5      556 

 

 R-structure:  ~units 

 

      post.mean l-95% CI u-95% CI eff.samp 

units      4570     3998     5088    978.2 

 

 Location effects: weight ~ Diet  

 

            post.mean l-95% CI u-95% CI eff.samp  pMCMC     

(Intercept)   125.283  117.381  132.716     1000 <0.001 *** 

Diet1           7.840    4.243   12.009     1000 <0.001 *** 

Diet2          -3.916  -15.894    7.223     1000   0.52     

--- 

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 

 

We will cover more sophisticated issues together with the rest of our workshop. Also – don’t 

hesitate to ask if you don’t know why I’m doing what I’m doing! ;) 
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Part 1 

Overview 

1. Presentation 

a. Essence of conventional and Bayesian statistics 

b. Likelihood-based methods 

c. MCMC approximation – how it works? 

d. Linear models – brief summary of underlying ‘mechanics’; link functions; etc. 

2. DIY – introduction to Bayes’ way of thinking 

a. Brief summary of R – what do you need to know before entering MCMC world 

b. Brief summary of R – interpreting linear models, contrasts and why is it so 

confusing? 

c. Working with pure likelihood on simulated data 

d. Overview of MCMCglmm – arguments, calls, accessing results 

e. Priors – what is it, how it works, how to choose? 

f. Combining priors with likelihood – let’s go Bayesian 

g. Unusual priors – improper priors 

3. DIY – how to begin? 

a. Simple model with real data – Gaussian data in MCMCglmm and lmer 

b. When NOT to use lmer? Why one should use MCMCglmm? 

c. Diagnostics of MCMCglmm 

d. Non-Gaussian data: Poisson and overdispersion 

e. Non-Gaussian data: binomial and binary data, fixing (co)variance priors 

f. Random effects in Bayesian framework? 

g. Random interactions and confusions caused thereby 

 

 

Likelihood – traditional approach 

Maximum likelihood estimators are common in classical statistics. For instance, arithmetic 

mean, OLS estimates of regression coefficients – all are in fact estimators that maximize the 

likelihood of data given particular values of parameters, i.e. max(P(y|par)). In general situations 

as considered here this likelihood is proportional to the product of probability densities of the 

data given particular values of parameters: 

L(par|y) ~ Πi P(y|pari) 

 In this part we’ll play with simple simulated Gaussian data and see how simple maximum 

likelihood estimation works. We’ll learn how to use optimizing functions of R (which some of 
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you may find useful in other applications) and how to produce multivariate graphs of likelihood 

surfaces. 

Maximum likelihood 

First – we’ll simulate simple normal data (10 observations) and see how do they look like on the 

distributions they were taken from. Likelihoods may be tricky and as you’ll see – the likelihood 

of our data may be higher for different (!) parameters than those we’ll use to simulate them. 

> ###code block 1 

> 

> dataG <- data.frame(y = rnorm(10,mean=0,sd=sqrt(1))) 

> dataG$y 

 [1] -0.2079101 -1.1445615 -0.0656215 -0.6294617  0.5422668 

 [6]  0.7025364  0.7627269  0.1905778  1.6687900  2.0852642 

> 

> yscale <- seq(-3,3,0.1) #possible values of y for the plot 

> Prob<-dnorm(yscale,mean=0,sd=sqrt(1)) #pdf 

> plot(Prob~yscale,type="l") 

> Prob.y <- dnorm(dataG$y, mean=0, sd=sqrt(1)) 

> points(Prob.y~dataG$y) 

> 

> L <- prod(Prob.y) #likelihood 

> L 

[1] 5.94403e-07 

> 

> Lalt <- prod(dnorm(dataG$y,mean=0,sd=sqrt(0.5))) 

> Lalt 

[1] 1.107162e-07 

> 

> 

> plot(dnorm(yscale,0,sqrt(0.5))~yscale,type="l") 

> lines(Prob~yscale,col="red") 

> points(Prob.y~dataG$y,col="red") 

> points(dnorm(dataG$y,0,sqrt(0.5))~dataG$y) 

 

 As you can see – the likelihood of our data is higher under different set of parameters 

and it’s apparent from the plot. In order to fully understand what’s happening here we should 

evaluate the likelihood on the grid of possible parameters. Here we’ll use simple loop to iterate 

through the space of our parameters (mean and variance) to calculate possible values of L and 

then we’ll plot them as a flattened perspective plot (contours). Be aware that each of you has 

slightly different values in you simulated data (in rnorm ‘r’ means random!) and you’ll probably 

have to rescale your plots so that they could contain whole likelihood surface. 

> ###code block 2 

>  

> x=seq(-1,1,0.05) 

> y=seq(0,2,0.05) 

> z=matrix(numeric(length(x)*length(y)),c(length(x),length(y))) 

>  

> for (i in 1:length(x)) { 
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+  

+ for (j in 1:length(y)){ 

+  

+ z[i,j]=prod(dnorm(dataG$y,mean=x[i],sd=sqrt(y[j]))) 

+ } 

+ } 

>  

> z<-z/max(z) 

> contour(x,y,z,nlevels=10,xlab="mean",ylab="variance") 

 

 Importantly we don’t have to rely on visual inspection looking for ML estimator. We can 

use R built-in features designed for searching for functions maxima and minima. In such case 

you should define your maximized/minimized function (in our case it will be the likelihood 

which is the product – or, on a log scale, the sum – of probability densities. In the optimizing 

routine you have to specify starting parameters (which may be our assumed parameters of the 

distribution; these will be coordinates of the space in which optimization will be done) – they 

have to be of the same number as parameters in the optimized function, you also have to provide 

all variables that are in the optimized function. We’ll compare our optimum with the estimates 

of a linear model (which uses REML instead of ML). 

> ###code block 3 

>  

> loglik <- function(pars,y) { 

+ sum(dnorm(y,pars[1],sqrt(pars[2]),log=TRUE)) 

+ } 

>  

> ML <- optim(c(mean=0,v=1),fn=loglik,y=dataG$y, 

+ control=list(fnscale=-1,reltol=1e-16)) 

> ML$par 

     mean         v  

0.3904607 0.8768050  

>  

> REML <- glm(y~1,data=dataG) 

> summary(REML) 

 

Call: 

glm(formula = y ~ 1, data = dataG) 

 

Deviance Residuals:  

     Min        1Q    Median        3Q       Max   

-1.53502  -0.56280  -0.02404   0.35722   1.69480   

 

Coefficients: 

            Estimate Std. Error t value Pr(>|t|) 

(Intercept)   0.3905     0.3121   1.251    0.242 

 

(Dispersion parameter for gaussian family taken to be 0.9742278) 

 

    Null deviance: 8.768  on 9  degrees of freedom 

Residual deviance: 8.768  on 9  degrees of freedom 

AIC: 31.064 

 

Number of Fisher Scoring iterations: 2 

 

>  

> #REML estimator is better (the bias is smaller by  
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> #factor of n/n-1) 

> ML$par["v"]*(10/9) 

        v  

0.9742278 

MCMCglmm – syntax 

Before we “go Bayesian” it’s important to know the monster, namely the MCMCglmm package. 

MCMCglmm works simply as any other modeling routine in R. It’s most important argument is 

the formula, defined as usual: 

y ~ A + B*C + D + E + D:E + I(A^2) 

 Importantly, this formula takes only fixed effects. All random effects are introduced by 

the random argument, which takes the same formula syntax, but without the LHS (left-hand-

site, namely the response; remember to retain the tilde!). Below you’ll find most important 

argument and keywords used by MCMCglmm together with their meaning. 

 

Argument What it does? 

random formula for random effects 

prior prior probabilities for random effects (fixed effects priors are default) 

data your data 

rcov 
optional, contains random effects structure, needed in multivariate 

models 

verbose if FALSE you won’t get status updates while MCMCglmm works 

pr 
saves posterior distribution of random effects (similar to BLUPs in 

REML) 

pl saves posterior distribution of latent variables 

nitt number of iterations 

thin every thin sample will be saved to posterior 

burnin how many beginning iterations will be omitted? 

idh covariance structure fixing covariances to zero 

us covariance structure allowing for estimation of covariances 

units odd name for residuals 

trait dummy fixed factor indexing traits in multivariate models 

animal 
used with pedigree, estimates animal/individual specific random 

effects corrected for dependence 

at.level chooses levels of the fixed effect to fit the model to 

sir used to define recursive models 

family distribution of the response(s) 
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saveX saves the design matrix of fixed effects 

saveZ saves the design matrix of random effects 

mev provides vector of measurements errors in meta-analysis 

pedigree 
provides pedigree for animal models or phylogeny for comparative 

analyses 

singular.ok 

in case of collinear/not estimable fixed effects use this argument as 

TRUE to estimate them irrespectively of these problems; be careful 

interpreting them 

DIC default TRUE, if TRUE – Deviance Information Criterion is calculated 

 

 After executing the program you’ll get a model object from which you can extract several 

things. Below we’ll define simple mixed model on the data from simple agricultural split-plot 

experiment with blocks and three crossed experimental treatments. You’ll learn how to access 

information in the output object and how to manipulate this information. 

> ###code block 6a 

>  

> yield<-read.table("splityield.txt",head=T,sep="\t") 

> summary(yield) 

     yield        block      irrigation   density   fertilizer 

 Min.   : 60.00   A:18   control  :36   high  :24   N :24      

 1st Qu.: 86.00   B:18   irrigated:36   low   :24   NP:24      

 Median : 95.00   C:18                  medium:24   P :24      

 Mean   : 99.72   D:18                                         

 3rd Qu.:114.00                                                

 Max.   :136.00                                                

>  

> m1.yield <- MCMCglmm(yield~(irrigation+density+fertilizer)^2- 

+ density:fertilizer,random=~block, data=yield,  

+ verbose=F, prior=list(R=list(V=1,nu=0.002), 

+ G=list(G1=list(V=1,nu=0.002)))) 

>  

> plot(m1.yield$Sol) 

Waiting to confirm page change... 

Waiting to confirm page change... 

Waiting to confirm page change... 

> plot(m1.yield$VCV) 

>  

> HPDinterval(m1.yield$Sol) 

                                        lower      upper 

(Intercept)                        72.8982436  90.244904 

irrigationirrigated                16.0979333  39.673239 

densitylow                         -4.6478603  13.467672 

densitymedium                       1.2938722  20.161037 

fertilizerNP                       -4.2757404  13.881927 

fertilizerP                        -7.6785447  11.146146 

irrigationirrigated:densitylow    -42.5905389 -16.324538 

irrigationirrigated:densitymedium -32.3313328  -5.104103 
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irrigationirrigated:fertilizerNP    1.8248399  28.217214 

irrigationirrigated:fertilizerP     0.7738581  27.669071 

attr(,"Probability") 

[1] 0.95 

> HPDinterval(m1.yield$VCV) 

             lower     upper 

block 3.446255e-04  11.11558 

units 9.147564e+01 189.55837 

attr(,"Probability") 

[1] 0.95 

>  

> posterior.mode(m1.yield$Sol) 

                      (Intercept)  

                        81.729989  

              irrigationirrigated  

                        28.476032  

                       densitylow  

                         4.655881  

                    densitymedium  

                        10.125696  

                     fertilizerNP  

                         5.427540  

                      fertilizerP  

                         1.466348  

   irrigationirrigated:densitylow  

                       -28.522910  

irrigationirrigated:densitymedium  

                       -16.715192  

 irrigationirrigated:fertilizerNP  

                        16.827155  

  irrigationirrigated:fertilizerP  

                        15.400264  

> posterior.mode(m1.yield$VCV) 

       block        units  

 -0.05737882 123.32842262 

 

 It’s important to realize that both Sol and VCV tables are not simply single numerical 

values, but they contain all posterior samples for the given parameter. Thus, distributions you 

see after using plot are not analytically derived but they’re original, smoothed histograms 

based on these random posterior samples. 

Combining prior knowledge – prior distributions 

What’s unique for Bayesian analysis is that we consider parameters as random rather than fixed 

and we use some knowledge about these parameters to estimate their values. In other words, 

the posterior probability of observing parameters of a given value depends both on the 

likelihood of the data of given these parameters and our prior knowledge about them: 

P(par|y) ~ L(par|y)P(par) ~ P(y|par)P(par) 
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 Diverse distributions could be used in the Bayesian framework to define priors but in 

our analyses we’ll use two of them. Priors for fixed effects are defined using normal distribution 

with mean zero and very large (>1e+06) variance, making such prior essentially flat and 

uninformative. For (co)variances we use inverse Wishart distribution (IW) which is slightly 

problematic for multivariate (co)variance structures (and we’ll come back to them later). For 

simple variances IW is defined by two parameters: variance – V and belief parameter – nu. When 

belief goes to infinity, the distribution tends to a mode equal to V. In general the mode of the 

distribution is (V*nu)/nu+2. In R we can model IW using inverse gamma distribution (e.g. 

function dinvgamma) with parameters: shape=nu/2 and scale=nu*V/2). Care is needed to 

ensure that the prior is proper (integrates to one as an ordinary distribution) and this condition 

holds for single variance components when V>0 and nu>0. When nu≤0 we get improper prior 

which – although difficult – may be useful (as we’ll see below). 

 Here we’ll combine our likelihood function with prior densities to see how such 

estimates work compared to ML. First we’ll define function for calculating prior probability for 

given values of parameters, then we’ll combine these with likelihood and use to estimate values 

of the parameters. Since we’re working on the log scale, it’s summing and not multiplying that 

we’ll employ. 

> ###code block 4 

>  

> library(MCMCpack) 

Loading required package: MASS 

## 

## Markov Chain Monte Carlo Package (MCMCpack) 

## 

## Support provided by the U.S. National Science Foundation 

## (Grants SES-0350646 and SES-0350613) 

## 

>  

> logprior <- function(pars,priorR,priorB) { 

+ dnorm(pars[1],mean=priorB$mu,sd=sqrt(priorB$V),log=T)+ 

+ log(dinvgamma(pars[2],shape=priorR$nu/2, 

+ scale=(priorR$nu*priorR$V)/2)) 

+ } 

>  

> prior <- list(R=list(V=1,nu=0.002),B=list(mu=0,V=1e+08)) 

>  

> loglikprior <- function(pars,y,priorR,priorB) { 

+ loglik(pars,y)+logprior(pars,priorR,priorB) 

+ } 

>  

> Bayes <- optim(c(mean=0,v=1),fn=loglikprior,y=dataG$y, 

+ priorR=prior$R,priorB=prior$B, 

+ control=list(fnscale=-1,reltol=1e-16)) 

>  

>  

> x=seq(-1,1,0.05) 

> y=seq(0,2,0.05) 

> z1=matrix(numeric(length(x)*length(y)),c(length(x),length(y))) 
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>  

> for (i in 1:length(x)) { 

+  

+ for (j in 1:length(y)){ 

+  

+ z1[i,j]=exp(loglikprior(c(x[i],y[j]), 

+ dataG$y,prior$R,prior$B)) 

+ } 

+ } 

>  

> #z2<-z1/max(z1) sometimes does not work as NaNs are produced 

> contour(x,y,z,nlevels=10,xlab="mean",ylab="variance") 

> contour(x,y,z1,nlevels=10,xlab="mean",ylab="variance", 

+ add=T,col="red") 

 

 As you can see – variance estimates using prior are even more downwardly biased – 

which is caused by the fact that simple optimization of the L*prior ignores uncertainty of the 

mean estimate. We can however integrate our bivariate distribution along the mean scale to get 

the posterior for variance, which would take uncertainty in mean into account: 

 (  | )  ∫ (    | )   

Important advantage of MCMC-based methods is that analytically it’s most often impossible to 

get the posterior marginal distribution of a parameter.  

> ###code block 5 

>  

> contour(x,y,z1,nlevels=10,xlab="mean",ylab="variance", 

+ col="red") 

> library(MCMCglmm) 

> m1 <- MCMCglmm(y~1,data=dataG,prior=prior,thin=1,nitt=30000, 

+ verbose=F) 

> points(cbind(m1$Sol,m1$VCV),pch=".") 

 

 Of course, one would ask how sure we can be that our sample space (visualized above) is 

appropriate and guaranties we’re integrating true distribution (i.e. integrating to one using the 

boundaries of our space)? If we look at the proportion of samples from the posterior contained 

within considered sample space you’ll see it’s almost 1. Thus, we can construct the posterior 

distribution safely over this range (try using whole sample from the posterior – such histogram 

would be impossible to interpret). 

> ###code block 6 

>  

> prop.table(table(m1$Sol > -1 & m1$Sol<1 & m1$VCV<2)) 

 

    FALSE      TRUE  

0.1444815 0.8555185  

> hist(m1$VCV[which(m1$VCV<2)],breaks=30) 

> abline(v=Bayes$par["v"],col="red") 
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Improper priors – let’s be nasty 

As I mentioned, sometimes priors are not proper, i.e. they don’t integrate to unity. The simplest 

example is a uniform prior defined over R. It’s not proper since it integrates to +∞. Uniform 

prior would be proper only when defined over the range A=[a,b]⊂R so that P(x∊A)(b-a)=1. 

 In case of IW-distributed priors for single variance components they’re improper when 

nu≤0. For nu=0 we get flat prior for variance. This reduces well known Bayesian equation to 

simple ML estimator: P(par|y)~P(y|par). In other words – the joint posterior distribution will be 

equal to ML estimator but remember – modes you’re getting analyzing problems are from 

marginal distributions, not from the joint one. 

> ###code block 7 

>  

> prior.fl <- list(R=list(V=1,nu=0)) 

> m1.fl <- MCMCglmm(y~1, data=dataG, thin=1,nitt=100000, 

+ prior=prior.fl,verbose=F) 

 

We may also define prior that will be non-informative for the variance and this could be 

achieved by setting V=0 and nu=-2. Such prior makes joint posterior to deviate from ML 

estimates but marginal estimates of variance are in agreement with REML. 

In general – priors in MCMCglmm lead often to confusion. Several conventions exist for defining 

them. E.g. improper priors can be useful in a way that they allow for reducing our problem to 

simple ML estimator or REML estimator (for marginal distributions of parameters). However, 

improper priors must be used with caution – improper prior distribution may lead to improper 

posterior distribution, which would be meaningless from a statistical point of view. The question 

is – which strategy to adopt in defining priors? First of all – use weak priors unless you want to 

impose some (strong) constraints on the variance. In general – having good data, with 

appropriate levels of replication, and sampling populations of random effects accordingly should 

make priors less influential – in other words, when the data contain enough information to 

estimate the parameters, priors should not influence these estimates. In case of less informative 

data you might consider using improper priors, but be extremely cautious. From my point of 

view two approaches are recommended: use either priors with V=1 and nu=0.002 or 

calculate the variance from your data and use it (partitioned accordingly with respect to random 

effects) as values for V. You’ll see these approaches in further parts of this workshop. 

Fitting simple model in MCMCglmm and lmer  

Here we’ll use two packages – MCMCglmm and lme4 (more precisely lmer function) to fit linear 

mixed models. Loading both packages may  lead to masking some useful functions, so remember 

to call coda::HPDinterval instead of HPDinterval, if the latter does not work. 

Alternatively, remember to clean your workspace and do detach(package:lme4) before 

proceeding further. The data we’ll be using are centered data on blue tits: tarsus lengths and 

back colours, together with the information on genetic and social mothers (dams and 

fosternests; chicks were cross-fostered). 

> ###code block 8 
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>  

> library(lme4) 

 

Attaching package: 'lme4' 

 

The following object(s) are masked from 'package:coda': 

 

    HPDinterval 

 

The following object(s) are masked from 'package:stats': 

 

    AIC 

 

>  

> data(BTdata) 

> lm1.bt1 <- lmer(tarsus~sex+(1|fosternest)+(1|dam),data=BTdata) 

> summary(lm1.bt1) 

Linear mixed model fit by REML  

Formula: tarsus ~ sex + (1 | fosternest) + (1 | dam)  

   Data: BTdata  

  AIC  BIC logLik deviance REMLdev 

 2087 2115  -1038     2065    2075 

Random effects: 

 Groups     Name        Variance Std.Dev. 

 dam        (Intercept) 0.220259 0.46932  

 fosternest (Intercept) 0.069204 0.26307  

 Residual               0.567919 0.75360  

Number of obs: 828, groups: dam, 106; fosternest, 104 

 

Fixed effects: 

            Estimate Std. Error t value 

(Intercept) -0.40566    0.06706  -6.049 

sexMale      0.76879    0.05714  13.455 

sexUNK       0.21043    0.12670   1.661 

 

Correlation of Fixed Effects: 

        (Intr) sexMal 

sexMale -0.449        

sexUNK  -0.210  0.224 

> lm1.bt2 <- lmer(tarsus~sex+(1|dam),data=BTdata) 

> anova(lm1.bt1,lm1.bt2) 

Data: BTdata 

Models: 

lm1.bt2: tarsus ~ sex + (1 | dam) 

lm1.bt1: tarsus ~ sex + (1 | fosternest) + (1 | dam) 

        Df    AIC    BIC  logLik  Chisq Chi Df Pr(>Chisq)     

lm1.bt2  5 2086.7 2110.2 -1038.3                              

lm1.bt1  6 2077.1 2105.4 -1032.6 11.518      1  0.0006893 *** 

--- 

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1  

> lm1.bt3 <- lmer(tarsus~sex,data=BTdata) 

Error in lmerFactorList(formula, fr, 0L, 0L) :  
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  No random effects terms specified in formula 

>  

> library(nlme) 

 

Attaching package: 'nlme' 

 

The following object(s) are masked from 'package:lme4': 

 

    BIC, fixef, lmList, ranef, VarCorr 

 

> lm1.bt3 <- lme(tarsus~sex,random=~1|dam,data=BTdata) 

> lm1.bt3a <- lm(tarsus~sex,data=BTdata) 

> anova(lm1.bt3,lm1.bt3a) 

         Model df      AIC      BIC    logLik   Test  L.Ratio 

lm1.bt3      1  5 2096.757 2120.334 -1043.379                 

lm1.bt3a     2  4 2237.927 2256.789 -1114.964 1 vs 2 143.1703 

         p-value 

lm1.bt3          

lm1.bt3a  <.0001 

> detach(package:lme4) 

> detach(package:nlme) 

 

 As you can see, working with lmer is quite simple, just remember the way random 

effects are specified: (1|effect). However, it has some drawbacks. You can do stepwise 

simplification of your model, using likelihood ratio tests with anova() but only until you have 

one random effect. Then simplification won’t work as lmer cannot fit models without random 

effects. To proceed with the simplification you have to fit one model (with one last random 

effect) using lme() from library nlme and then compare it with model fitted using lm() and 

not containing any random effects. Also, remember that here you should use @ rather than $ to 

access elements of the model object, e.g. model@ranef and model@fixef (in glm it would be 

model$coef). 

 Working with lmer can be further extended to more complex models, where categorical 

interactions in random effects are defined. It simply requires replacing ones in random effect 

specifications with appropriate formulae defining effects that interact with random terms. Here 

we’re fitting model that allows for different effects of dams in different sexes + allows for 

estimating covariances between sexes with respect to this random effects. 

> summary(lm2.bt) 

Linear mixed model fit by REML  

Formula: tarsus ~ sex + (1 | fosternest) + (sex | dam)  

   Data: BTdata  

  AIC  BIC logLik deviance REMLdev 

 2097 2149  -1037     2065    2075 

Random effects: 

 Groups     Name        Variance   Std.Dev. Corr           

 dam        (Intercept) 0.22730365 0.476764                

            sexMale     0.00035282 0.018784 -1.000         

            sexUNK      0.00464764 0.068174  1.000 -1.000  

 fosternest (Intercept) 0.06645438 0.257787                
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 Residual               0.56805496 0.753694                

Number of obs: 828, groups: dam, 106; fosternest, 104 

 

Fixed effects: 

            Estimate Std. Error t value 

(Intercept) -0.40616    0.06738  -6.028 

sexMale      0.77018    0.05714  13.479 

sexUNK       0.19938    0.12878   1.548 

 

Correlation of Fixed Effects: 

        (Intr) sexMal 

sexMale -0.470        

sexUNK  -0.171  0.218 

> matrix(VarCorr(lm1.bt)$dam,3,3) 

Error: object 'lm1.bt' not found 

Error in VarCorr(lm1.bt) :  

  error in evaluating the argument 'x' in selecting a method for function 

'VarCorr' 

> matrix(VarCorr(lm2.bt)$dam,3,3) 

            [,1]          [,2]         [,3] 

[1,]  0.22730365 -0.0089553503  0.032502689 

[2,] -0.00895535  0.0003528245 -0.001280547 

[3,]  0.03250269 -0.0012805468  0.004647637 

 

Variance structure we’ve used here is extreme: we allow for both variance differences between 

levels of fixed effects and covariances>0. We could specify this variance structure in different 

way, putting different restrictions on (co)variances. Table below gives several examples 

(adapted from Hadfield 2010). As you can see – lmer can fit much less (co)variance structures 

than MCMCglmm. 

lmer MCMCglmm (Co)variance Correlation 

(1|dam) dam [
   
   
   

] [
   
   
   

] 

(sex-1|dam) us(sex):dam [

            
            
            

] [

         
         
         

] 

(1|sex:dam) sex:dam [
   
   
   

] [
   
   
   

] 



Szymon Drobniak – Advanced approaches to linear modeling and multivariate statistics in R  

Uppsala, 18-21.01.2010 

26 

 

(1|dam)+(1|sex:dam) dam+sex:dam [
         
          
         

] [
   
   
   

] 

- idh(sex):dam [

      

      

      

] [
   
   
   

] 

- corh(sex):dam [

                      
                      
                      

] [
   
   
   

] 

- cor(sex):dam [

         
         
         

] [

         
         
         

] 

 

You can specify models with different types of (co)variance and compare them using likelihood-

ratio tests. 

 One more disadvantage of lmer is the way you test the effects from the model. In the 

summary, random effects have just variance values (and testing random effects is done best by 

using likelihood-ratio tests; putting standard errors on variances from REML is dangerous and 

simple Wald-tests should be avoided at all costs). For fixed effects its worse: only t-values are 

provided with no df’s. We can use them to test fixed effects suing some conservative values of df, 

e.g. number of records – sum(number of levels in i-th effect). See example below: 

> ###code block 10 

>  

> tv<-summary(lm2.bt)@coefs[,3][2] 

> #access to t-value for sexMale 

> df<-dim(BTdata)[1]-nlevels(BTdata$dam)- 

+ nlevels(BTdata$fosternest) 

> 2*(1-pt(tv,df)) 

sexMale  

      0  

> #two-tailed test, beware of the sign of tv 

>  

> Fv<-anova(lm1.bt1)[,4][1] 

> 1-pf(Fv,2,df) 

[1] 0 
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 How to do the same things in MCMCglmm? First we’ll fit the simple model with both 

random effects and see if removal of the fosternest effect is still justified. As MCMCglmm doesn’t 

generate likelihoods, we’ll have to use DIC to check for significance of random effects. Putting 

confidence intervals on variance functions is easy and we’ll see it for the proportion of variance 

explained by dam effect. Next we’ll fit similar sex-specific model and see if conclusions hold. 

> ###code block 11 

>  

> prior <- list(R=list(V=1,nu=0.002), 

+ G=list(G1=list(V=1,nu=0.002), 

+ G2=list(V=1,nu=0.002))) 

> m2.bt1 <- MCMCglmm(tarsus~sex, random=~fosternest+dam, 

+ prior=prior,verbose=F, data=BTdata) 

> summary(m2.bt1) 

 

 Iterations = 12991 

 Thinning interval  = 3001 

 Sample size  = 1000  

 

 DIC: 1992.66  

 

 G-structure:  ~fosternest 

 

           post.mean l-95% CI u-95% CI eff.samp 

fosternest   0.06633 0.007809   0.1265    277.7 

 

               ~dam 

 

    post.mean l-95% CI u-95% CI eff.samp 

dam    0.2266   0.1368   0.3264    854.9 

 

 R-structure:  ~units 

 

      post.mean l-95% CI u-95% CI eff.samp 

units    0.5727   0.5023   0.6309    768.7 

 

 Location effects: tarsus ~ sex  

 

            post.mean l-95% CI u-95% CI eff.samp  pMCMC     

(Intercept)  -0.41128 -0.53400 -0.27243     1549 <0.001 *** 

sexMale       0.76993  0.67216  0.88232     1000 <0.001 *** 

sexUNK        0.20186 -0.04125  0.45252     1000  0.114     

--- 

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1  

>  

> m2.bt2 <- MCMCglmm(tarsus~sex, random=~dam, prior=prior, 

+ verbose=F, data=BTdata) 

> m2.bt1$DIC; m2.bt2$DIC #it seems we should keep fosternest 

[1] 1992.66 

[1] 2014.644 

> plot(m2.bt1$VCV) 

>  
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> prior <- list(R=list(V=1,nu=0.002), 

+ G=list(G1=list(V=1,nu=0.002), 

+ G2=list(V=diag(3),nu=1.002))) 

> m2.bt3 <- MCMCglmm(tarsus~sex, random=~fosternest+us(sex):dam, 

+ prior=prior,verbose=F, data=BTdata) 

Warning message: 

In MCMCglmm(tarsus ~ sex, random = ~fosternest + us(sex):dam, prior = 

prior,  : 

  some combinations in us(sex):dam do not exist and 75 missing records have 

been generated 

> summary(m2.bt3) 

 

 Iterations = 12991 

 Thinning interval  = 3001 

 Sample size  = 1000  

 

 DIC: 2010.066  

 

 G-structure:  ~fosternest 

 

           post.mean l-95% CI u-95% CI eff.samp 

fosternest   0.06122 0.002835   0.1181    328.6 

 

               ~us(sex):dam 

 

              post.mean l-95% CI u-95% CI eff.samp 

Fem:Fem.dam      0.2945  0.17344   0.4310   1000.0 

Male:Fem.dam     0.1919  0.08804   0.2836    932.1 

UNK:Fem.dam      0.2076  0.03547   0.4119    445.4 

Fem:Male.dam     0.1919  0.08804   0.2836    932.1 

Male:Male.dam    0.2726  0.15343   0.3905    910.0 

UNK:Male.dam     0.2035  0.03732   0.4096    453.8 

Fem:UNK.dam      0.2076  0.03547   0.4119    445.4 

Male:UNK.dam     0.2035  0.03732   0.4096    453.8 

UNK:UNK.dam      0.4720  0.11445   0.9037    330.8 

 

 R-structure:  ~units 

 

      post.mean l-95% CI u-95% CI eff.samp 

units    0.5547   0.4944   0.6192     1000 

 

 Location effects: tarsus ~ sex  

 

            post.mean l-95% CI u-95% CI eff.samp  pMCMC     

(Intercept)   -0.4054  -0.5391  -0.2557     1000 <0.001 *** 

sexMale        0.7729   0.6407   0.9050     1000 <0.001 *** 

sexUNK         0.1946  -0.1224   0.5021     1000  0.218     

--- 

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1  

> coda::HPDinterval(m2.bt3$VCV) 

                    lower     upper 

fosternest    0.002834977 0.1181360 
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Fem:Fem.dam   0.173436520 0.4309517 

Male:Fem.dam  0.088043697 0.2836029 

UNK:Fem.dam   0.035469593 0.4119485 

Fem:Male.dam  0.088043697 0.2836029 

Male:Male.dam 0.153425620 0.3904530 

UNK:Male.dam  0.037318849 0.4096160 

Fem:UNK.dam   0.035469593 0.4119485 

Male:UNK.dam  0.037318849 0.4096160 

UNK:UNK.dam   0.114453067 0.9037068 

units         0.494441135 0.6191769 

attr(,"Probability") 

[1] 0.95 

> r <- m2.bt3$VCV[,3]/sqrt(m2.bt3$VCV[,2]*m2.bt3$VCV[,6]) 

> coda::HPDinterval(r) 

         lower     upper 

var1 0.5093113 0.8522105 

attr(,"Probability") 

[1] 0.95 

> m2.bt1$DIC; m2.bt3$DIC 

[1] 1992.66 

[1] 2010.066 

>  

> #correlations for different variance components are negative 

> cor(m2.bt1$VCV) 

           fosternest         dam       units 

fosternest  1.0000000 -0.25064407 -0.22133074 

dam        -0.2506441  1.00000000 -0.04342781 

units      -0.2213307 -0.04342781  1.00000000 

>  

> #we could test dam effect in usual way but instead we'll see 

> #how big proportion of variance it explains 

>  

> prop.v <- m2.bt1$VCV[,2]/rowSums(m2.bt1$VCV) 

> coda::HPDinterval(prop.v) 

         lower     upper 

var1 0.1778132 0.3460457 

attr(,"Probability") 

[1] 0.95 

> #if you remember to detach lmer after use, you can skip coda:: 

 

 You should have already noticed great deal of advantages when using MCMCglmm. First 

of all – testing of random effects is not based on likelihood, which may be extremely biased for 

non-gaussian data; here you use DIC values. Secondly, you get straightforward tests of 

significance of fixed effects. Thirdly, calculating any variance-derived values (such as 

correlations) and putting confidence intervals on variance components couldn’t be easier: you 

can simply manipulate whole distributions, stored in consecutive columns of model$VCV, add, 

substract, multiply, square and divide them. Derived numbers also have some posterior 

distributions, so you can easily put CIs on them as well. So the point is – when use lmer and 

when MCMCglmm. 
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Short guide – how to choose best method? 

This is simple: if you have good, well replicated Gaussian data, with lots of information on large 

numbers of random effects’ levels – use lmer. It performs well, but remember that significance 

tests may be a little cumbersome. However, if you want to fit categorical random interactions – 

avoid using lmer. It doesn’t allow for residual variances to differ between levels of fixed effect 

and thus any differences here could possibly be confounded with the differences in variances 

associated with a particular random effect. For categorical interactions use MCMCglmm. 

 In case of non-Gaussian data use MCMCglmm – REML methods are not able to analytically 

derive likelihood in such data and work on approximations. If such approximations are then 

used in likelihood-ratio tests – results may not be reliable. 

 Finally – remember that Poisson and binomial data are almost always overdispersed. 

lmer has this famous “quasi” prefix for such distributions that should deal with it. However, it 

doesn’t. MCMCglmm fits overdispersion by default – so it’s much better choice. A good alternative 

is ASReml, which is faster than MCMCglmm – but it’s not free which for many people is limiting. 

And it also works on REML estimates which may be problematic in case of “weird” distributions. 

Diagnostics of MCMCglmm 

MCMCglmm works using randomization so utmost care should be taken to ensure that this 

random sampling actually samples joint posterior distribution of parameters. Specifically, you 

have to check if consecutive samples from the posterior are independent from each other. At the 

beginning they may not be independent as the walk through the posterior starts from some 

values, but then the chain should converge and samples should be independent. 

 At first, let’s generate some “artificial” problems by shortening the MCMC chain in the 

previous model (on blue tits). We achieve this by setting the number of iterations to some low 

value (nitt=2000). Default burnin=3000, so we should lower this value below 2000. We’ll 

sample every second iteration (thin=2). 

> ###code block 12 

>  

> prior <- list(R=list(V=1,nu=0.002), 

+ G=list(G1=list(V=1,nu=0.002), 

+ G2=list(V=1,nu=0.002))) 

> m3.bad <- MCMCglmm(tarsus~sex, random=~fosternest+dam,  

+ prior=prior,verbose=F, data=BTdata, nitt=2000,  

+ burnin=500, thin=2) 

> plot(m3.bad$VCV) 

> autocorr(m3.bad$VCV) 

, , fosternest 

 

         fosternest         dam       units 

Lag 0    1.00000000 -0.24455001 -0.10430602 

Lag 2    0.82815231 -0.23892563 -0.10144780 

Lag 10   0.47711854 -0.09162047 -0.09937022 

Lag 20   0.23792851 -0.08204370 -0.09793121 
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Lag 100 -0.02210706  0.04458598 -0.04048683 

 

, , dam 

 

           fosternest          dam       units 

Lag 0   -0.2445500147  1.000000000 -0.10084968 

Lag 2   -0.2245963939  0.359331075 -0.01494919 

Lag 10  -0.1340634723 -0.019236027  0.01143639 

Lag 20  -0.1250328753 -0.009754384  0.02827148 

Lag 100  0.0009055187 -0.073661071  0.01977242 

 

, , units 

 

          fosternest         dam       units 

Lag 0   -0.104306016 -0.10084968  1.00000000 

Lag 2   -0.094951195 -0.09790104  0.07213249 

Lag 10  -0.036437767 -0.04785507 -0.01063517 

Lag 20  -0.031778578  0.01160051 -0.03949663 

Lag 100 -0.009335712  0.03043995 -0.03858646 

 

>  

> m3.good <- MCMCglmm(tarsus~sex, random=~fosternest+dam,  

+ prior=prior,verbose=F, data=BTdata,  

+ nitt=50000, burnin=3000, thin=50) 

> plot(m3.good$VCV) 

> autocorr(m3.good$VCV) 

, , fosternest 

 

            fosternest          dam       units 

Lag 0     1.0000000000 -0.225723765 -0.18379490 

Lag 50    0.0007770752 -0.027699347  0.02414860 

Lag 250   0.0223765238  0.019155326 -0.01651623 

Lag 500  -0.0197449053  0.002413883 -0.02576015 

Lag 2500  0.0043333577  0.019968891  0.04245713 

 

, , dam 

 

          fosternest         dam        units 

Lag 0    -0.22572376  1.00000000 -0.015647709 

Lag 50   -0.06615831  0.01547784  0.029970618 

Lag 250  -0.06405542  0.03430238 -0.001347705 

Lag 500   0.03822892 -0.02795335 -0.015139277 

Lag 2500 -0.02030468  0.07640567  0.014159344 

 

, , units 

 

           fosternest          dam       units 

Lag 0    -0.183794898 -0.015647709  1.00000000 

Lag 50   -0.011400580  0.002101844 -0.02310039 

Lag 250  -0.005789198 -0.060701762  0.04574427 

Lag 500  -0.026688031 -0.023276145  0.02380457 

Lag 2500 -0.009362384  0.012835732  0.02213512 
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> #try below if you don't want to have huge  

> #complex matrix outputs 

> diag(autocorr(m3.good$VCV)[2,,]) 

   fosternest           dam         units  

 0.0007770752  0.0154778375 -0.0231003891 

 

 The first model mixes poorly, and clear trends in time series suggest non-independence 

of samples drawn from posterior. Additionally, autocorr indicates substantial autocorrelation 

in random effects of dam and fosternest (in units it’s smaller). After extending the chain 

problems disappear. Chains are in the form of flat time series, and autocorrelations are well 

below 0.05. 

 Finally, there’s one more aspect of MCMC diagnostics: we should not only ensure 

independence of consecutive samples but also make sure that all effects are sampled good 

enough, i.e. samples we based our estimation on are large enough. 

> ###code block 12a 

>  

> effectiveSize(m3.good$VCV) 

fosternest        dam      units  

  940.0000   816.6073   940.0000 

Non-Gaussian data and overdispersion  

Roughly speaking, overdispersion happens in case of data from distributions like Poisson or 

binomial. In such distributions variance is a function of mean. If, for some reason, variation in 

our data exceeds this expected when using the mean estimate, it said that such data are 

overdispersed. Using some simple simulated data we’ll show how it arises. We’ll simulate 

Poisson-distributed data and analyse it twice. First – we’ll use all predictors that are used in 

simulating the data (thus, we’ll have complete information regarding variation in our data). 

Secondly, we’ll intentionally omit one predictor, introducing to our data some extra variation 

that is not explained and that gets superimposed on the variation resulting from Poisson 

process. 

> ###code block 13 

>  

> x <- runif(1000, 0, 1) #uniform random variable 

> z <- rnorm(1000, 0, sqrt(1.5)) #normal random variable 

> l <- 0.5 + 1*x + 2*z #desired linear predictor 

> yp <- rpois(1000, exp(l)) #added Poisson residuals to response 

> glmdata <- data.frame(y = yp, x = x, z = z) 

> pois1<-glm(y~x+z,data=glmdata,family="poisson") 

> summary(pois1) #coeficients are on the right scale 

 

Call: 

glm(formula = y ~ x + z, family = "poisson", data = glmdata) 

 

Deviance Residuals:  

    Min       1Q   Median       3Q      Max   
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-3.0553  -0.7429  -0.2667   0.4608   2.8070   

 

Coefficients: 

            Estimate Std. Error z value Pr(>|z|)     

(Intercept) 0.478843   0.017342   27.61   <2e-16 *** 

x           1.008212   0.017995   56.03   <2e-16 *** 

z           2.003880   0.004654  430.58   <2e-16 *** 

--- 

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1  

 

(Dispersion parameter for poisson family taken to be 1) 

 

    Null deviance: 224940.41  on 999  degrees of freedom 

Residual deviance:    940.13  on 997  degrees of freedom 

AIC: 3837.9 

 

Number of Fisher Scoring iterations: 4 

 

> #because we exp the linear pred 

>  

> pois2<-glm(y~x,data=glmdata,family="poisson") 

> summary(pois2) 

 

Call: 

glm(formula = y ~ x, family = "poisson", data = glmdata) 

 

Deviance Residuals:  

    Min       1Q   Median       3Q      Max   

-10.526   -8.860   -7.956   -5.327  268.267   

 

Coefficients: 

            Estimate Std. Error z value Pr(>|z|)     

(Intercept)  3.48965    0.01041  335.07   <2e-16 *** 

x            0.52518    0.01664   31.56   <2e-16 *** 

--- 

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1  

 

(Dispersion parameter for poisson family taken to be 1) 

 

    Null deviance: 224940  on 999  degrees of freedom 

Residual deviance: 223935  on 998  degrees of freedom 

AIC: 226831 

 

Number of Fisher Scoring iterations: 8 

 

> pois2$deviance/pois2$df.residual 

[1] 224.3836 

>  

> pois21<-glm(y~x,data=glmdata,family="quasipoisson") 

> summary(pois21) 

 

Call: 
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glm(formula = y ~ x, family = "quasipoisson", data = glmdata) 

 

Deviance Residuals:  

    Min       1Q   Median       3Q      Max   

-10.526   -8.860   -7.956   -5.327  268.267   

 

Coefficients: 

            Estimate Std. Error t value Pr(>|t|)     

(Intercept)   3.4897     0.4951   7.049 3.36e-12 *** 

x             0.5252     0.7911   0.664    0.507     

--- 

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1  

 

(Dispersion parameter for quasipoisson family taken to be 2259.535) 

 

    Null deviance: 224940  on 999  degrees of freedom 

Residual deviance: 223935  on 998  degrees of freedom 

AIC: NA 

 

Number of Fisher Scoring iterations: 8 

 

>  

> pois3<-MCMCglmm(y~x,data=glmdata,family="poisson",verbose=F) 

> summary(pois3) 

 

 Iterations = 12991 

 Thinning interval  = 3001 

 Sample size  = 1000  

 

 DIC: 4650.252  

 

 R-structure:  ~units 

 

      post.mean l-95% CI u-95% CI eff.samp 

units       5.4    4.735    6.049    550.9 

 

 Location effects: y ~ x  

 

            post.mean l-95% CI u-95% CI eff.samp  pMCMC     

(Intercept)    0.4885   0.1709   0.8170     1000  0.008 **  

x              1.0527   0.4874   1.5617     1000 <0.001 *** 

--- 

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 

 

Omitting one variable not only extremely biases estimates but also changes deviance to df ratio. 

In general, if the model fitted is correct, the asymptotic distribution of deviance should be 

proportional do a Chi-squared variable with n-p df (roughly speaking number of data minus 

number of predictors): D~χ2(df=n-p). If D>n-p>E[χ2(df=n-p)] it may indicate overdispersion. To 

be more practical, in the presence of overdispersion the ratio of residual deviance to residual df 

will be greater than 1. It’s value approximately tells us about the strength of overdispersion. In 

our case, this is extreme (the ration is >300). Even using quasipoisson distribution does not 
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change anything – estimates look the same. However, when fitting the same model in MCMCglmm 

– estimates are much better. They’re still biased but much closer to their true values. It is 

because MCMCglmm uses additive model of overdispersion. What does it mean? 

 In its usual form linear model I defined like this: y=Xβ+e where e is residual 

(unexplained variance in the response). Taking expectations gives: E[y]=exp(Xβ). Exponent 

indicates, that it’s a Poisson process for which log is the link function. We may present this on 

the scale of the latent variable: l=η which is equivalent to log(E[y])= Xβ. However, in the 

presence of overdispersion, there’s additional variation on top of the predicted value and it 

gives: E[y]=exp(Xβ+e*) or l=η+e*. Now it is not entirely true that y~Pois(exp(l)) because there is 

this additional variation over the variability of Poisson process. We can actually see these 

additional “residuals” (quotation marks indicate that this residual shows deviation from the 

variance expected by the Poisson process for a given mean). We’ll analyse data on traffic 

accidents in Sweden. Analysis was performed to see if speed limit has some effect on the number 

of accidents, and if there are any year-by-year and day-by-day trends. 

> ###code block 14 

>  

> library(MASS) 

> data(Traffic) 

> Traffic$year<-as.factor(Traffic$year) 

>  

> m4.bad <- glm(y~limit+year+day,family="poisson",data=Traffic) 

> summary(m4.bad) 

 

Call: 

glm(formula = y ~ limit + year + day, family = "poisson", data = Traffic) 

 

Deviance Residuals:  

    Min       1Q   Median       3Q      Max   

-4.1774  -1.4067  -0.4040   0.9725   4.9920   

 

Coefficients: 

              Estimate Std. Error z value Pr(>|z|)     

(Intercept)  3.0467406  0.0372985  81.685  < 2e-16 *** 

limityes    -0.1749337  0.0355784  -4.917 8.79e-07 *** 

year1962    -0.0605503  0.0334364  -1.811   0.0702 .   

day          0.0024164  0.0005964   4.052 5.09e-05 *** 

--- 

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1  

 

(Dispersion parameter for poisson family taken to be 1) 

 

    Null deviance: 625.25  on 183  degrees of freedom 

Residual deviance: 569.25  on 180  degrees of freedom 

AIC: 1467.2 

 

Number of Fisher Scoring iterations: 4 

 

> m4.bad$deviance/m4.bad$df.residual 

[1] 3.162493 
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> # >3 times greater variation than expected 

 

 We can extract information on these residuals – this would require recording the 

behaviour of the latent variable (logged expectation of the response in this case). We’ll show 

how much this additional variation changes Poisson process. 

> ###code block 15 

>  

> prior <- list(R=list(V=1,nu=0.002)) 

> m4.good <- MCMCglmm(y~limit+year+day,family="poisson",data=Traffic, 

+ prior=prior,verbose=F,pl=T) 

> lat92 <- m4.good$Liab[,92] 

> eta92 <- m4.good$Sol[,"(Intercept)"]+m4.good$Sol[,"day"]*92 

> resid92 <- lat92-eta92 

> mean(resid92) 

[1] -0.1240384 

 

Additional code in this part makes it possible to actually visualize all possible 

realizations of this specific Poisson process with additional variation; each of these residuals 

however happens to be observed only on one specific day. 

 One last riddle about overdispersion: in the Poisson process variance cannot be uniquely 

estimated as it is equal to the mean. Why didn’t we fix this variance in the prior specification to 

prevent it from being estimated? 

 

More on random effects  

The distinction between fixed and random effects is sometimes difficult and controversial (see 

the discussion about year effect in countless ecological papers). However, this controversy in 

Bayesian analysis largely vanishes since ALL effects are basically random, they just differ in the 

way we define their variances. For fixed effects variances are set as very large, yielding flat 

priors, whereas for variance components we shrink this variance to allow it’s direct estimation 

(for in random effects it’s variance we’re interested in). Let’s see how we can see this 

equivalence. First we’ll fit simple fixed-effect model to our traffic data and obtain predictions for 

both years. 

> ###code block 16 

>  

> X <- model.matrix(y~limit+year+day,data=Traffic) 

> X[c(1,2,3,91,92,183,184),] 

    (Intercept) limityes year1962 day 

1             1        0        0   1 

2             1        0        0   2 

3             1        0        0   3 

91            1        0        0  91 

92            1        0        0  92 

183           1        1        1  91 

184           1        1        1  92 
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> m5.fix <- 

MCMCglmm(y~limit+year+day,data=Traffic,verbose=F,family="poisson") 

> # using default prior 

> #prediction for 1961 and 1962 with no speed limit 

> y61.m5.fix <- m5.fix$Sol[,"(Intercept)"] 

> y62.m5.fix <- m5.fix$Sol[,"(Intercept)"]+m5.fix$Sol[,"year1962"] 

> posterior.mode(y61.m5.fix) 

    var1  

2.974852  

> posterior.mode(y62.m5.fix) 

    var1  

2.915276 

 

Now we redefine model so that year is treated as random effect BUT is associated with large 

variance, so basically it’s the same as fixed effect. Note different method for obtaining 

predictions as in random effects intercept is suppressed by default. 

> ###code block 17 

>  

> Z <- model.matrix(~year-1,data=Traffic) 

> Z[c(1,2,3,91,92,183,184),] 

    year1961 year1962 

1          1        0 

2          1        0 

3          1        0 

91         1        0 

92         1        0 

183        0        1 

184        0        1 

> X2 <- model.matrix(y~limit+day,data=Traffic) 

> X2[c(1,2,3,91,92,183,184),] 

    (Intercept) limityes day 

1             1        0   1 

2             1        0   2 

3             1        0   3 

91            1        0  91 

92            1        0  92 

183           1        1  91 

184           1        1  92 

> W<-cbind(X2,Z) 

> W[c(1,2,3,91,92,183,184),] 

    (Intercept) limityes day year1961 year1962 

1             1        0   1        1        0 

2             1        0   2        1        0 

3             1        0   3        1        0 

91            1        0  91        1        0 

92            1        0  92        1        0 

183           1        1  91        0        1 

184           1        1  92        0        1 

>  

> prior <- list(R=list(V=1,nu=0.002), 

+ G=list(G1=list(V=1e+08,fix=1))) 
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> m5.ran<-MCMCglmm(y~limit+day,random=~year,family="poisson", 

+ data=Traffic,verbose=F,prior=prior,pr=T)  

> #pr save the posterior of random effects 

> y61.m5.ran <- m5.ran$Sol[,"(Intercept)"]+ 

+ m5.ran$Sol[,"year.1961"] 

> y62.m5.ran <- m5.ran$Sol[,"(Intercept)"]+ 

+ m5.ran$Sol[,"year.1962"] 

>  

> #comparing posteriors for year effects from fixed and random effects 

>  

> y.fix <- mcmc(cbind(y1961=y61.m5.fix,y1962=y62.m5.fix)) 

> y.ran <- mcmc(cbind(y1961=y61.m5.ran,y1962=y62.m5.ran)) 

> plot(mcmc.list(y.fix,y.ran)) #virtually the same! 

>  

> #unfortunately as we have just two levels of year 

> #treating this as random confounds year effects with intercept 

>  

> plot(c(m5.ran$Sol[,"year.1962"]+ 

+ m5.ran$Sol[,"year.1961"])/2,m5.ran$Sol[,"(Intercept)"]) 

 

And what if we made a more sensible decision and treated day as random effect? We’ll leave day 

as continuous predictor to capture any trends associated with day, but also we’ll put categorical 

variable day as random effect, to account for between day variability. Recall that we’ve earlier 

observed this variability as overdispersed residuals in the Poisson process. Accounting for 

variability in days almost entirely removes overdispersion and shrinks residual variance to close 

to zero. 

> ###code block 18 

>  

> Traffic$day<-as.factor(Traffic$day) 

> prior <- list(R=list(V=1,nu=0.002), 

+ G=list(G1=list(V=1,nu=0.002))) 

> m6 <- MCMCglmm(y~limit+year+as.numeric(day),random=~day, 

+ family="poisson",data=Traffic,prior=prior,verbose=F) 

> summary(m6) 

 

 Iterations = 12991 

 Thinning interval  = 3001 

 Sample size  = 1000  

 

 DIC: 1166.191  

 

 G-structure:  ~day 

 

    post.mean l-95% CI u-95% CI eff.samp 

day   0.09221  0.06065   0.1296    170.4 

 

 R-structure:  ~units 

 

      post.mean  l-95% CI u-95% CI eff.samp 

units  0.006757 0.0002729  0.01838    49.26 
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 Location effects: y ~ limit + year + as.numeric(day)  

 

                 post.mean   l-95% CI   u-95% CI eff.samp 

(Intercept)      3.0116915  2.8451222  3.1551507    342.8 

limityes        -0.2495462 -0.3345628 -0.1533956    145.4 

year1962        -0.0377975 -0.1201447  0.0389475    193.7 

as.numeric(day)  0.0024443 -0.0002819  0.0050961    268.4 

                 pMCMC     

(Intercept)     <0.001 *** 

limityes        <0.001 *** 

year1962         0.330     

as.numeric(day)  0.096 .   

--- 

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1  

> plot(m6$VCV) 

> autocorr(m6$VCV) 

, , day 

 

                day       units 

Lag 0    1.00000000 -0.23114258 

Lag 10   0.30761083 -0.20437420 

Lag 50   0.12384555 -0.12673639 

Lag 100  0.06815593 -0.11596727 

Lag 500 -0.02644770  0.04207223 

 

, , units 

 

                day       units 

Lag 0   -0.23114258  1.00000000 

Lag 10  -0.23203677  0.84447766 

Lag 50  -0.17455563  0.53681546 

Lag 100 -0.13089769  0.36073419 

Lag 500  0.02705169 -0.09263029 

 

> #we'll run the model for longer to treat 

> #autocorrelation in residuals 

>  

> m6 <- MCMCglmm(y~limit+year+as.numeric(day),random=~day, 

+ family="poisson",data=Traffic,prior=prior,verbose=F, 

+ nitt=100000,burnin=20000,thin=50) 

> plot(m6$VCV) 

> #traces look better butperhaps improper  

> #or expanded priors would be better 

Binary/categorical data 

Often in biology our data can be expressed as categories, ordered or without any numerical 

value (e.g. colours, sexes, success/failure data). In such cases we should use categorical 

family (or ordinal if our categories are ordered in any way), associated with link-functions 

logit or probit, respectively. Such data can be troubling and difficult to analyse. 
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 We’re in the best positions if we have binomial data, i.e. we have some units and within 

every unit we count some successes and some failures. Having such data makes possible to see if 

there’s any heterogeneity in those units with respect to underlying probabilities associated with 

the binomial process. Here we’ll generate simple binomial data which show such heterogeneity. 

Note that if in such data only intercept is fitted, it indicates heterogeneity as this intercept would 

be different than probabilities in every unit. 

> ###code block 19 

>  

> ones <- rbinom(20, size=5, prob=c(0.2,0.8)) 

> zeros <- 5-ones 

> bdata <- rbind(ones,zeros) 

> bdata<-rbind(bdata,unit=letters[1:20]) 

> bdata<-as.data.frame(t(bdata)) 

> prior <- list(R=list(V=1,nu=0.002)) 

> m7.bin <- MCMCglmm(cbind(ones,zeros)~1, 

+ data=bdata,family="multinomial2", 

+ prior=prior,verbose=F,nitt=100000, 

+ burnin=20000,thin=50) 

> summary(m7.bin) 

 

 Iterations = 99951 

 Thinning interval  = 20001 

 Sample size  = 1600  

 

 DIC: 193.2368  

 

 R-structure:  ~units 

 

      post.mean  l-95% CI u-95% CI eff.samp 

units    0.4696 0.0003961    1.537    705.2 

 

 Location effects: cbind(ones, zeros) ~ 1  

 

            post.mean l-95% CI u-95% CI eff.samp pMCMC 

(Intercept)   -0.1216  -0.6218   0.3347      983 0.596 

> install.packages("boot");library(boot) 

> inv.logit(summary(m7.bin)$solutions[1]) #intercept is 0.5 

[1] 0.4696424 

> plot(m7.bin$VCV) 

>  

> data(PlodiaR) 

> m8.bin <- MCMCglmm(cbind(Pupated,Infected)~1,  

+ family="multinomial2", 

+ data=PlodiaR, verbose=F) 

> plot(m8.bin$VCV) 

>  

> #are Family effects really so variable? 

> mode.mu <- posterior.mode(m8.bin$Sol) 

> mode.V <- posterior.mode(m8.bin$VCV) 

> ondatascale <- inv.logit(rnorm(10000, mean=mode.mu,  

+ sd=sqrt(mode.V))) 
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> hist(ondatascale) #yes, it is! 

 

 Things become more complicated if we don’t have such unit-grouping and every binary 

observation is repeated only once. Then we are not able to distinguish between equal 

probabilities in every unit or extreme asymmetry in some groups compared to others. Such 

scenarios would be indistinguishable and importantly every numerical inference would be 

biased by the choice of underlying residual (units) variance as it would be meaningless. We’ll 

reanalyse Plodia data, but rewritten in the form of binary variables. As in such process residual 

variance cannot be estimated we’ll fix it at some value and see what happens for different fixing 

values. 

> ###code block 20 

>  

> data(PlodiaRB) 

> prior1 <- list(R=list(V=1,fix=1),G=list(G1=list(V=1,nu=0.002))) 

> prior2 <- list(R=list(V=2,fix=1),G=list(G1=list(V=1,nu=0.002))) 

>  

> m9.bin1 <- MCMCglmm(Pupated~1,random=~FSfamily, 

+ family="categorical", 

+ data=PlodiaRB,prior=prior1,verbose=F) 

> m9.bin2 <- MCMCglmm(Pupated~1,random=~FSfamily, 

+ family="categorical", 

+ data=PlodiaRB,prior=prior2,verbose=F) 

>  

> plot(mcmc.list(m9.bin1$Sol,m9.bin2$Sol)) 

> plot(mcmc.list(m9.bin1$VCV,m9.bin2$VCV))#both posteriors differ! 

 

 Both intercept and family variance posteriors differ with regard to the residualvariance 

we’ve chosen. However it should not worry us. First of all – what matter the most here is not the 

absolute variation among families, but the degree to which two states (Pupated/Infected) are 

correlated within the same family. This information is contained in the coefficient of intraclass 

correlation, calculated like this: IC = Var(FSfamily)/(Var(FSfamily)+Var(units)+c), 

where the constant c=pi^2/3 for logit link, and c=1 for probit link. Youcan check that both IC’s 

have the same posterior distribution: 

> ###code block 21 

>  

> IC1 <- m9.bin1$VCV[,1]/(rowSums(m9.bin1$VCV)+pi^2/3) 

> IC2 <- m9.bin2$VCV[,1]/(rowSums(m9.bin2$VCV)+pi^2/3) 

> plot(mcmc.list(IC1,IC2)) 

 

 As for intercept, we can use Hadfield’s results (2010), due to Diggle et al. (2004), and 

rescale estimates so that they assumed some particular value of residual variance 

(Var(units)=v). Location effects (intercept, regression coefficients) can be rescaled by factor 

sqrt((1+c^2*v)/(1+c^2*Var(units))) and variance estimates may be rescaled by 

factor (1+c^2*v)/(1+c^2*Var(units)). The constant is 1 for probit and 

16*sqrt(3)/15*pi for logit. Let’s try this for assumed residual variance of zero (v=0). 

Posteriors of Intercept are the same, up to Monte Carlo error. 



Szymon Drobniak – Advanced approaches to linear modeling and multivariate statistics in R  

Uppsala, 18-21.01.2010 

42 

 

> ###code block 22 

>  

> c <- 16*sqrt(3)/(15*pi) 

> Int1 <- m9.bin1$Sol/sqrt(1+c^2*m9.bin1$VCV[,2]) 

> Int2 <- m9.bin2$Sol/sqrt(1+c^2*m9.bin2$VCV[,2]) 

> plot(mcmc.list(Int1,Int2)) #the same 

 

 Importantly, binary data can cause problems when there’s large (near complete) 

separation, i.e. when most successes happened in one unit and most failures in other. This is 

because although on the link (logit) scale prior for the mean is flat (large variance), it’s not flat at 

all on the data scale: 

> ###code block 23 

>  

> hist(inv.logit(rnorm(1000,0,sqrt(1e+08)))) 

> #alternatively 

> #hist(plogis(rnorm(1000,0,sqrt(1e+08)))) 

 

 Let’s simulate toy data with such huge separation and see how we can analyse them 

using usual glm() and MCMCglmm(). It’s apparent, that only after changing the prior (and 

removing intercept) we can get some sensible results (Hadfield 2010). 

> ###code bloc 24 

>  

> exper <- gl(2,25) 

> y <- rbinom(50,1,c(0.5, 0.001)[exper]) 

> bdata2 <- data.frame(exp=exper,y=y) 

> table(bdata2) 

   y 

exp  0  1 

  1 14 11 

  2 25  0 

>  

> m10.glm <- glm(y~exp,data=bdata2,family="binomial") 

> summary(m10.glm) 

 

Call: 

glm(formula = y ~ exp, family = "binomial", data = bdata2) 

 

Deviance Residuals:  

       Min          1Q      Median          3Q         Max   

-1.077e+00  -1.077e+00  -7.976e-05  -7.976e-05   1.281e+00   

 

Coefficients: 

             Estimate Std. Error z value Pr(>|z|) 

(Intercept)   -0.2412     0.4029  -0.599    0.549 

exp2         -19.3249  2150.8026  -0.009    0.993 

 

(Dispersion parameter for binomial family taken to be 1) 
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    Null deviance: 52.691  on 49  degrees of freedom 

Residual deviance: 34.296  on 48  degrees of freedom 

AIC: 38.296 

 

Number of Fisher Scoring iterations: 18 

 

>  

> prior.def<-list(R=list(V=1,fix=1)) 

> m10.mc <- MCMCglmm(y~exp,data=bdata2,family="categorical", 

+ prior=prior.def,verbose=F) 

> summary(m10.mc) 

 

 Iterations = 12991 

 Thinning interval  = 3001 

 Sample size  = 1000  

 

 DIC: 36.75788  

 

 R-structure:  ~units 

 

      post.mean l-95% CI u-95% CI eff.samp 

units         1        1        1        0 

 

 Location effects: y ~ exp  

 

            post.mean l-95% CI u-95% CI eff.samp  pMCMC     

(Intercept)   -0.2432  -1.1484   0.7405  321.737  0.632     

exp2         -10.9369 -17.2524  -2.4858    6.142 <0.001 *** 

--- 

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1  

> plot(m10.mc$Sol) 

>  

> prior.better <- list(R=list(V=1,fix=1), 

+ B=list(mu=c(0,0),V=diag(2)*(1+pi^2/3))) 

> m10.mc2 <- MCMCglmm(y~exp,data=bdata2,family="categorical", 

+ prior=prior.better, verbose=F) 

> plot(m10.mc2$Sol) 

> #looks much better but may need running for longer 

>  

> #checking if the results conform to simpler test - exact binomial 

> m10.test <- binom.test(table(bdata2)[2,2],25) 

> m10.test 

 

        Exact binomial test 

 

data:  table(bdata2)[2, 2] and 25  

number of successes = 0, number of trials = 25, p-value 

= 5.96e-08 

alternative hypothesis: true probability of success is not equal to 0.5  

95 percent confidence interval: 

 0.0000000 0.1371852  

sample estimates: 
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probability of success  

                     0  

 

>  

> predict(m10.mc2,interval="confidence")[26,] 

        fit         lwr         upr  

0.045980115 0.003148058 0.116423314  

Warning message: 

In predict.MCMCglmm(m10.mc2, interval = "confidence") : 

  predict.MCMCglmm is still developmental - be careful 

Categorical random interactions 

We’ve heard something on random interactions in lmer. Here we’ll extend this concept in 

MCMCglmm as it gives much greater control on (co)variance structures. 

 We could repeat our analysis when looking for the interaction between sex and dam in 

our system (BTdata). Previously we used us() function, allowing for non-zero covariances. Now 

we’ll repeat this analysis but fix these covariances at zero. It’s simpler, mainly from the point of 

view of prior structure. 

> ###code block 25 

>  

>  

> prior.a <- list(R=list(V=1,nu=0.002), 

+ G=list(G1=list(V=1,nu=0.002), 

+ G2=list(V=diag(3),nu=0.002))) 

> m11.bta <- MCMCglmm(tarsus~sex, random=~fosternest+idh(sex):dam, 

+ prior=prior.a,verbose=F, data=BTdata) 

> plot(m11.bta$VCV) 

Waiting to confirm page change... 

> #UNK has low dam variance which may be problematic 

 

 We can see the actual matrix of correlations in the dam effects and its representation in 

the R3 space. 

> ###code block 26 

>  

> Vdam.a <- diag(colMeans(m11.bta$VCV)[2:4]) 

> colnames(Vdam.a) <- colnames(m11.bta$VCV)[2:4] 

> Vdam.a 

       Fem.dam  Male.dam    UNK.dam 

[1,] 0.1765957 0.0000000 0.00000000 

[2,] 0.0000000 0.1715039 0.00000000 

[3,] 0.0000000 0.0000000 0.05000367 

>  

> plotsubspace(Vdam.a,axes.lab=T) 

Loading required package: rgl 

> #elipsoid depicting this covariance structure 
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 The same can be done with an alternative definition of covariance structure using us(). 

We’ve used this function already but now we’ll specify better prior. In general, priors for 

complex (co)variance structures depend on the particular structure. 

> ###code block 27 

>  

> prior.b <- list(R=list(V=1,nu=0.002), 

+ G=list(G1=list(V=1,nu=0.002), 

+ G2=list(V=diag(3)*0.02,nu=4))) 

> m11.btb <- MCMCglmm(tarsus~sex, random=~fosternest+us(sex):dam,  

+ prior=prior.b, 

+ verbose=F, data=BTdata) 

Warning message: 

In MCMCglmm(tarsus ~ sex, random = ~fosternest + us(sex):dam, prior = 

prior.b,  : 

  some combinations in us(sex):dam do not exist and 75 missing records have 

been generated 

> plot(m11.btb$VCV) 

Waiting to confirm page change... 

Waiting to confirm page change... 

Waiting to confirm page change... 

>  

> Vdam.b <- matrix(colMeans(m11.btb$VCV)[2:10],3,3) 

> colnames(Vdam.b) <- colnames(m11.btb$VCV)[2:4] 

> Vdam.b 

     Fem:Fem.dam Male:Fem.dam UNK:Fem.dam 

[1,]   0.2319357    0.1994277   0.2237089 

[2,]   0.1994277    0.2117362   0.2120803 

[3,]   0.2237089    0.2120803   0.2889578 

>  

> plotsubspace(Vdam.b,axes.lab=T) 

> #elipsoid depicting this covariance structure 

> plot(posterior.cor(m11.btb$VCV[,2:10])[,c(3,4,8)]) 

> #all r roughly equal to 1 

>  

> "simpler model";m2.bt1$DIC 

[1] "simpler model" 

[1] 1992.66 

> "us() variance structure";m11.btb$DIC 

[1] "us() variance structure" 

[1] 1997.765 

> "idh() variance structure";m11.bta$DIC 

[1] "idh() variance structure" 

[1] 2037.151 

 

 As you can see both correlations are strong (almost 1) and variances are equal. Model 

with zero covariances is the worst, based on DIC values. Remaining two are similar but simpler 

one (equal variances and unity correlations) is better. In general, be careful when comparing 

models with different prior structures (as it was done here). DIC differences smaller than 2 

should be treated with caution in such cases. 
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Priors for complex covariance structures  

Complex variance structures have to take into account possible dependence of variances (which 

arises in case of non-zero covariances). For idh() variance structures it’s simple: each 

variance in the structure is distributed independently, so new prior (nu_ and V_, notation 

adopted from Hadfield (2010)) relates to a single-variance prior (nu and V) like this: 

σi
2 ~ IW(nu_=nu, V_=V[1,1]) 

Hence prior specification in the example: V=diag(3), nu=0.002. 

 For us() structures it’s more complicated: 

σi
2 ~ IW(nu_=nu-dim(V)+1, V_=V[1,1]*nu/nu_) 

Consequently, we used V=diag(3)*0.02 and nu=4. We did use nu=4 instead of usual 

nu=4.002 and lower variance value to make this prior proper but also uninformative for 

correlation. We could alternatively use an improper prior, by setting V=diag(dim(V))*0 and 

nu=dim(V)-3, but remember dangers of using improper priors. 

 Using inverse gamma distribution, with shape=nu/2 and scale=(nu*V)/2 we can 

actually visualize this prior for one of its elements: 

> ###code block 28 

>  

> nu.star <- prior.b$G$G2$nu - dim(prior.b$G$G2$V)[1]*1 

> V.star <- prior.b$G$G2$V[1,1]*(prior.b$G$G2$nu/nu.star) 

> xv <- seq(1e-16,1,length=100) 

> library(MCMCpack) 

> dv<-dinvgamma(xv,shape=nu.star/2,scale=(nu.star*V.star)/2) 

> detach(package:MCMCpack) 

> plot(dv~xv,type="l") 
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Part 2 

Overview 

1. Presentation (optional) – animal model, meta-analysis, comparative model – different 

names for basically the same. 

2. DIY – animal model 

a. Defining pedigrees 

b. Running simple animal model and interpreting it 

3. DIY – comparative model 

a. Working with phylogenies 

b. Package ape 

c. Incorporating phylogenetic data in a mixed model 

d. Interpreting comparative mixed models 

4. DIY – random regression 

a. Random interactions – not only categorical: interpretation 

b. Building random regression models – logic and strategy 

5. Multivariate models and estimation of genetic correlations 

a. The problem – many response variables 

b. Estimating genetic correlation 

Animal model – what do we need? 

Animal model as presented is just a very special case of mixed model, where for one particular 

fixed effect identity matrix is replaced by relationship matrix A, implying dependence of random 

effect between different data units. The degree of this dependence is described by the off-

diagonal values in this matrix. In other words, considering random effect Z1, it can be written 

that u~N(0,σ2A). Just to remind, in “usual” mixed models the effect of the random factor is 

assumed to be uncorrelated across units, and hence identity matrix I in place of A. 

 In order to successfully fit animal model we have to have two things: data file with the 

response assigned to data units (individuals), where all individuals are uniquely identified, and 

pedigree file containing information about the parents of each individual. The more genetic 

connections we have, the better our estimates will be. In general, data file should contain 

phenotypic/response information for all individuals, bot offspring and parents. Of course, 

usually there will be some source, first generation for which parents are not known. Remember 

also to use all available genealogy information; if for some reason we don’t have measurements 

for some parents, but we KNOW that certain children come from these parents, we may assign 

dummy parent identifiers to indicate shared ancestry of these children. We will work on two 

examples – one is the data on blue tits from MCMCglmm package, and second is data on 

imaginary creatures, gryphones, from Wilson et al. (2010). 

 First of all – make yourself familiar with the pedigree file. 

> ###code block B1 

>  
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> library(MCMCglmm) 

> data(BTdata) 

> data(BTped) 

>  

> #lets look at some chosen family 

>  

> parents <- function(x) { 

+ any(x=="R187920"|x=="R187921") 

+ } 

>  

> where<-apply(BTped,1,parents) 

> fam <- BTped[which(where),] 

> fam 

      animal     dam    sire 

66   R187920    <NA>    <NA> 

172  R187921    <NA>    <NA> 

325  R187726 R187920 R187921 

411  R187724 R187920 R187921 

503  R187723 R187920 R187921 

838  R187613 R187920 R187921 

932  R187612 R187920 R187921 

1030 R187609 R187920 R187921 

>  

> #to see the monster - just calculate the relationships 

> install.packages("kinship"); library(kinship) 

>  

> #multiply by 2 since relatedness is twice P 

> #that an allele is ibd in 2 individuals 

> A <- 2*kinship(fam[,1],fam[,2],fam[,3]) 

> A 

        R187920 R187921 R187726 R187724 R187723 R187613 R187612 

R187920     1.0     0.0     0.5     0.5     0.5     0.5     0.5 

R187921     0.0     1.0     0.5     0.5     0.5     0.5     0.5 

R187726     0.5     0.5     1.0     0.5     0.5     0.5     0.5 

R187724     0.5     0.5     0.5     1.0     0.5     0.5     0.5 

R187723     0.5     0.5     0.5     0.5     1.0     0.5     0.5 

R187613     0.5     0.5     0.5     0.5     0.5     1.0     0.5 

R187612     0.5     0.5     0.5     0.5     0.5     0.5     1.0 

R187609     0.5     0.5     0.5     0.5     0.5     0.5     0.5 

        R187609 

R187920     0.5 

R187921     0.5 

R187726     0.5 

R187724     0.5 

R187723     0.5 

R187613     0.5 

R187612     0.5 

R187609     1.0 

 

Animal model – first encounter and beyond 
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Fitting simple animal model in MCMCglmm is simple. Having data and pedigree we can just 

proceed. Remember to use restricted variable animal to account for additive genetic effect. Here 

will fit simple animal model to estimate additive genetic variance and heritability of tarsus 

length in blue tits. We’ll see if model works fine (diagnostics) and correct it if necessary. 

> ###code block B2 

>  

> prior.b1 <- list(R=list(V=1,nu=0.002),G=list(G1=list(V=1,nu=0.002), 

+ G2=list(V=1,nu=0.002),G3=list(V=1,nu=0.002))) 

>  

> m.b1 <- MCMCglmm(tarsus~sex,random=~animal+dam+fosternest, 

+ data=BTdata,pedigree=BTped,verbose=F,prior=prior.b1) 

Warning message: 

In MCMCglmm(tarsus ~ sex, random = ~animal + dam + fosternest, data = 

BTdata,  : 

  some combinations in animal do not exist and 212 missing records have 

been generated 

> plot(m.b1$VCV)#needs attention - poor mixing 

> # may take up to 5 min! 

> m.b1 <- MCMCglmm(tarsus~sex,random=~animal+dam+fosternest, 

+ data=BTdata,pedigree=BTped,verbose=F,prior=prior.b1, 

+ nitt=100000,burnin=30000,thin=50) 

Warning message: 

In MCMCglmm(tarsus ~ sex, random = ~animal + dam + fosternest, data = 

BTdata,  : 

  some combinations in animal do not exist and 212 missing records have 

been generated 

> plot(m.b1$VCV) 

>  

> #perhaps simplification is a better choice 

> #since we have only full-sibs in our data 

> #genetic effects may be confounded with 

> #the dam effect and hence this poor mixin 

>  

> m.b2 <- MCMCglmm(tarsus~sex,random=~animal+fosternest, 

+ data=BTdata,pedigree=BTped,verbose=F,prior=prior.b1, 

+ nitt=30000,burnin=10000,thin=30) 

Warning message: 

In MCMCglmm(tarsus ~ sex, random = ~animal + fosternest, data = BTdata,  : 

  some combinations in animal do not exist and 212 missing records have 

been generated 

> plot(m.b2$VCV) #much better! 

> plot(m.b2$Sol) 

>  

> diag(autocorr(m.b2$VCV)[2,,]) 

    animal fosternest      units  

 0.5009898  0.0999186  0.4380569  

> # correlations are a bit high so we might run model for longer 

> # i'll leavy explaration to you to save our class time 

> # i'd recommend running this model for at least 100000 iterations 

>  

> HPDinterval(m.b2$VCV[,1]) #CI for VA 
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         lower     upper 

var1 0.2868201 0.6573943 

attr(,"Probability") 

[1] 0.9504505 

> h2 <- m.b2$VCV[,"animal"]/rowSums(m.b2$VCV) 

> posterior.mode(h2) 

     var1  

0.5364527  

> HPDinterval(h2) 

         lower     upper 

var1 0.3523153 0.6978943 

attr(,"Probability") 

[1] 0.9504505 

 

As you can see calculating heritabilities couldn’t be simpler. We can verify also another results – 

in the model with just dam and fosternest effects we could estimate broad-sense heritability 

taking advantage of the fact that the variance associated with dams should approximate half of 

additive genetic variance (plus some maternal, dominance and epistasis effects if present). In 

fact, they are in close agreement – but not entirely. Why? 

> ###code block B3 

>  

> # for broad sense heritability 

> m.b2a <- MCMCglmm(tarsus~sex,random=~dam+fosternest, 

+ data=BTdata,verbose=F,prior=prior.b1) 

> plot(m.b2a) 

Waiting to confirm page change... 

> H2 <- 2*(m.b2a$VCV[,"dam"]/rowSums(m.b2a$VCV)) 

> posterior.mode(H2) 

     var1  

0.5050896  

> HPDinterval(H2) 

         lower     upper 

var1 0.3569514 0.6906795 

attr(,"Probability") 

[1] 0.95 

 

Defining proper models is essential for correct interpretation of estimated effects. Here we’ll use 

simulated data on gryphons to follow patterns of variation between individuals. As you will see, 

results will depend on the inclusion of specific effects and on the way we partition variance. At 

the beginning try fitting simple animal model, starting with appropriate priors. Assume no fixed 

effects except the intercept. I’m suggesting using stronger priors that would improve mixing of 

our chain – we can afford it as our data are well structured and contain a lot of information on 

desired effects. I’m suggesting calculating overall variance in the trait (TARSUS) and partitioning 

it equally between all random terms, with belief parameter equal to one. 

 (no peeking ;)) 

> ###code block B4 

>  

> gryph<-read.table("Gryphon.txt",head=T,sep="\t") 
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> gryped<-read.table("gryphonped.txt",head=T,sep="\t") 

>  

>  

> names(gryph)[1]<-"animal" 

> gryph$animal <- as.factor(gryph$animal) 

> gryph$MOTHER <- as.factor(gryph$MOTHER) 

> gryph$BYEAR <- as.factor(gryph$BYEAR) 

> gryph$SEX <- as.factor(gryph$SEX) 

> gryph$BWT <- as.numeric(gryph$BWT) 

> gryph$TARSUS <- as.numeric(gryph$TARSUS) 

>  

> #factorise all ids in pedigree 

> for (i in 1:3) {gryped[,i]<-as.factor(gryped[,i])} 

>  

> m.b31 <- MCMCglmm(TARSUS~1, random=~animal, data=gryph, 

+ pedigree=gryped, verbose=F) 

Warning message: 

In MCMCglmm(TARSUS ~ 1, random = ~animal, data = gryph, pedigree = gryped,  

: 

  some combinations in animal do not exist and 225 missing records have 

been generated 

> plot(m.b31$VCV) 

>  

> VTAR <- var(gryph$TARSUS,na.rm=T) 

> prior.b31<- list(R=list(V=VTAR/2,nu=1),G=list(G1=list(V=VTAR/2,nu=1))) 

> m.b31 <- MCMCglmm(TARSUS~1, random=~animal, data=gryph, 

+ pedigree=gryped, verbose=F, nitt=50000, burnin=10000, 

+ thin=50, prior=prior.b31) 

Warning message: 

In MCMCglmm(TARSUS ~ 1, random = ~animal, data = gryph, pedigree = gryped,  

: 

  some combinations in animal do not exist and 225 missing records have 

been generated 

> plot(m.b31$VCV) #much better although even longer=better 

>  

> #heritability 

> h21 <- m.b31$VCV[,"animal"]/rowSums(m.b31$VCV) 

> posterior.mode(h21) 

     var1  

0.4418477  

> HPDinterval(h21) 

         lower     upper 

var1 0.2288822 0.6083062 

attr(,"Probability") 

[1] 0.95 

Now let’s see what’s happening when we include additional effects? 

> m.b32 <- MCMCglmm(TARSUS~SEX, random=~animal, data=gryph, 

+ pedigree=gryped, verbose=F, nitt=50000, burnin=10000, 

+ thin=50, prior=prior.b31) 

Warning message: 
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In MCMCglmm(TARSUS ~ SEX, random = ~animal, data = gryph, pedigree = 

gryped,  : 

  some combinations in animal do not exist and 225 missing records have 

been generated 

> plot(m.b32$VCV) #much better although even longer=better 

>  

> #heritability 

> h22 <- m.b32$VCV[,"animal"]/rowSums(m.b32$VCV) 

> posterior.mode(h22) 

     var1  

0.3659256  

> HPDinterval(h22) 

         lower     upper 

var1 0.2312707 0.5787381 

attr(,"Probability") 

[1] 0.95 

> #sex took some VR and thus increased h2 

>  

> prior.b33<- list(R=list(V=VTAR/3,nu=1),G=list(G1=list(V=VTAR/3,nu=1), 

+ G2=list(V=VTAR/3,nu=1))) 

> m.b33 <- MCMCglmm(TARSUS~SEX, random=~animal+BYEAR, data=gryph, 

+ pedigree=gryped, verbose=F, nitt=50000, burnin=10000, 

+ thin=50, prior=prior.b33) 

Warning message: 

In MCMCglmm(TARSUS ~ SEX, random = ~animal + BYEAR, data = gryph,  : 

  some combinations in animal do not exist and 225 missing records have 

been generated 

> plot(m.b33$VCV) #much better although even longer=better 

>  

> #heritability 

> h23 <- m.b33$VCV[,"animal"]/rowSums(m.b33$VCV) 

> posterior.mode(h23) 

     var1  

0.3444932  

> HPDinterval(h23) 

         lower     upper 

var1 0.1714646 0.5258129 

attr(,"Probability") 

[1] 0.95 

> posterior.mode(m.b32$VCV[,"units"]) 

    var1  

18.20563  

> posterior.mode(m.b33$VCV[,"units"]+m.b33$VCV[,"BYEAR"]) 

    var1  

19.91133  

>  

>  

> prior.b34<- list(R=list(V=VTAR/4,nu=1),G=list(G1=list(V=VTAR/4,nu=1), 

+ G2=list(V=VTAR/4,nu=1),G3=list(V=VTAR/4,nu=1))) 

> m.b34 <- MCMCglmm(TARSUS~SEX, random=~animal+BYEAR+MOTHER, data=gryph, 

+ pedigree=gryped, verbose=F, nitt=50000, burnin=10000, 

+ thin=50, prior=prior.b34) 
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Warning message: 

In MCMCglmm(TARSUS ~ SEX, random = ~animal + BYEAR + MOTHER, data = gryph,  

: 

  some combinations in animal do not exist and 225 missing records have 

been generated 

> plot(m.b34$VCV) 

>  

> #heritability 

> h24 <- m.b34$VCV[,"animal"]/rowSums(m.b34$VCV) 

> posterior.mode(h24) 

     var1  

0.3241248  

> HPDinterval(h24) 

         lower    upper 

var1 0.1142319 0.454118 

attr(,"Probability") 

[1] 0.95 

> #here heritability of TARSUS dropped dramatically as we used 

> #another random effect that accounts for similarity between sibs 

 

 As expected, playing with fixed and random effects changes our conclusions. Is this bad? 

Not really. We just have to realize how we interpret results with respect to fixed effects (we 

conditions our estimates on them) and random effects (they help partition the variance more 

adequately). Another important use of mixed models is estimation of repeatability. Here we’ll 

show how to achieve this and how to account for this extra variability to correct additive genetic 

effects for the presence of permanent environmental effects. 

> ###code block B5 

>  

> gryrm<-read.table("gryphonRM.txt",head=T,sep="\t") 

> names(gryrm)[1]<-"animal" 

> gryrm$animal<-as.factor(gryrm$animal) 

> gryrm$BYEAR<-as.factor(gryrm$BYEAR) 

> gryrm$AGE<-as.factor(gryrm$AGE) 

> gryrm$YEAR<-as.factor(gryrm$YEAR) 

> gryrm$LAYDATE<-as.numeric(gryrm$LAYDATE) 

> gryrm$ID<-gryrm$animal 

>  

> VLAY <- var(gryrm$LAYDATE, na.rm=T) 

> prior.b41 <- list(R=list(V=VLAY/2,nu=1),G=list(G1=list(V=VLAY/2,nu=1))) 

> m.b41 <- MCMCglmm(LAYDATE~1,random=~ID,verbose=F,data=gryrm, 

+ prior=prior.b41) 

> plot(m.b41$VCV) 

> #repeatability 

> rep1 <- m.b41$VCV[,"ID"]/rowSums(m.b41$VCV) 

> posterior.mode(rep1) 

     var1  

0.3446529  

> HPDinterval(rep1) 

         lower     upper 

var1 0.2879485 0.3939303 

attr(,"Probability") 
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[1] 0.95 

>  

> #lets account from age differences 

> m.b42 <- MCMCglmm(LAYDATE~AGE,random=~ID,verbose=F,data=gryrm, 

+ prior=prior.b41) 

> plot(m.b42$VCV) 

> #repeatability 

> rep2 <- m.b42$VCV[,"ID"]/rowSums(m.b42$VCV) 

> posterior.mode(rep2) 

     var1  

0.4259473  

> HPDinterval(rep2) 

         lower     upper 

var1 0.3728316 0.4801913 

attr(,"Probability") 

[1] 0.95 

>  

> #naive heritability 

> m.b43 <- MCMCglmm(LAYDATE~AGE,random=~animal,verbose=F,data=gryrm, 

+ prior=prior.b41,pedigree=gryped) 

Warning message: 

In MCMCglmm(LAYDATE ~ AGE, random = ~animal, verbose = F, data = gryrm,  : 

  some combinations in animal do not exist and 840 missing records have 

been generated 

> plot(m.b43$VCV) 

> #heritability 

> h25 <- m.b43$VCV[,"animal"]/rowSums(m.b43$VCV) 

> posterior.mode(h25) 

     var1  

0.4313042  

> HPDinterval(h25) 

        lower     upper 

var1 0.385356 0.5117057 

attr(,"Probability") 

[1] 0.95 

>  

> #heritability + permanet env effects 

> prior.b41 <- list(R=list(V=VLAY/3,nu=1),G=list(G1=list(V=VLAY/3,nu=1), 

+ G2=list(V=VLAY/3,nu=1))) 

> m.b44 <- MCMCglmm(LAYDATE~AGE,random=~animal+ID,verbose=F,data=gryrm, 

+ prior=prior.b41,pedigree=gryped) 

Warning message: 

In MCMCglmm(LAYDATE ~ AGE, random = ~animal + ID, verbose = F, data = 

gryrm,  : 

  some combinations in animal do not exist and 840 missing records have 

been generated 

> plot(m.b44$VCV)#be careful - running for longer required 

> #heritability and repeatability 

> h26 <- m.b44$VCV[,"animal"]/rowSums(m.b44$VCV) 

> rep2 <- m.b44$VCV[,"ID"]/rowSums(m.b44$VCV) 

> posterior.mode(h26) 

     var1  
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0.1853370  

> HPDinterval(h26) 

          lower     upper 

var1 0.08038286 0.2952880 

attr(,"Probability") 

[1] 0.95 

> posterior.mode(rep2) 

     var1  

0.2580697  

> HPDinterval(rep2) 

        lower     upper 

var1 0.148573 0.3530787 

attr(,"Probability") 

[1] 0.95 

Phylogenies – a short guide 

Phylogenies in some way are similar to pedigrees. They also represent relationships,  however 

not between individuals, but between species or higher taxa. We may use them in MCMCglmm in 

exactly the same way as we did with pedigrees and thus build phylogenetic comparative models, 

accounting for variability that might have arisen from evolutionary history rather than genuine 

ecological/individual-based processes. First we’ll learn how to build and handle phylogenies in 

R. We’ll use the package ape and as its output objects can be directly handled by MCMCglmm. 

 We’ll work with the mammals species phylogeny based on mammals super-tree and 

provided in Adams (2007). 

> ###code block B6 

>  

> mammals <- read.nexus("mammals.nex") 

> mammals 

 

Phylogenetic tree with 40 tips and 35 internal nodes. 

 

Tip labels: 

        Rattus_rattus, Sigmodon_hispidus, Peromyscus_eremicus, 

Peromyscus_maniculatus, Neotoma_cinerea, Microtus_pennsylvanicus, ... 

 

Rooted; includes branch lengths. 

> summary(mammals) 

 

Phylogenetic tree: mammals  

 

  Number of tips: 40  

  Number of nodes: 35  

  Branch lengths: 

    mean: 19.89730  

    variance: 641.1923  

    distribution summary: 

   Min. 1st Qu.  Median 3rd Qu.    Max.  

   0.10    3.10    9.10   26.52   94.50  
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  No root edge. 

  First ten tip labels: Rattus_rattus  

                        Sigmodon_hispidus 

                        Peromyscus_eremicus 

                        Peromyscus_maniculatus 

                        Neotoma_cinerea 

                        Microtus_pennsylvanicus 

                        Microtus_montebelli 

                        Chaetodipus_penicillatus 

                        Dipodomys_ordii 

                        Dipodomys_compactus 

  No node labels. 

> mammals.plot<-plot(mammals,font=1,cex=0.75) 

> nodelabels() 

> mammals$edge 

      [,1] [,2] 

 [1,]   41   42 

 [2,]   42   43 

 [3,]   43   44 

 [4,]   44   45 

 [5,]   45   46 

 [6,]   46    1 

 [7,]   46   47 

 [8,]   47    2 

 [9,]   47   48 

[10,]   48   49 

[11,]   49    3 

[12,]   49    4 

[13,]   48    5 

[14,]   46   50 

[15,]   50    6 

[16,]   50    7 

[17,]   45   51 

[18,]   51   52 

[19,]   52    8 

[20,]   52   53 

[21,]   53   54 

[22,]   54   55 

[23,]   55    9 

[24,]   55   10 

[25,]   54   56 

[26,]   56   57 

[27,]   57   58 

[28,]   58   11 

[29,]   58   12 

[30,]   57   59 

[31,]   59   60 

[32,]   60   13 

[33,]   60   14 

[34,]   59   15 

[35,]   57   16 

[36,]   57   17 
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[37,]   56   61 

[38,]   61   18 

[39,]   61   19 

[40,]   53   62 

[41,]   62   20 

[42,]   62   63 

[43,]   63   21 

[44,]   63   22 

[45,]   51   64 

[46,]   64   23 

[47,]   64   24 

[48,]   44   65 

[49,]   65   25 

[50,]   65   26 

[51,]   43   27 

[52,]   42   28 

[53,]   41   66 

[54,]   66   67 

[55,]   67   68 

[56,]   68   29 

[57,]   68   69 

[58,]   69   70 

[59,]   70   71 

[60,]   71   72 

[61,]   72   30 

[62,]   72   31 

[63,]   72   32 

[64,]   71   33 

[65,]   70   34 

[66,]   69   35 

[67,]   67   73 

[68,]   73   36 

[69,]   73   74 

[70,]   74   37 

[71,]   74   38 

[72,]   66   75 

[73,]   75   39 

[74,]   75   40 

> #if you want you can write the tree in newick format 

> write.tree(mammals,file="mammals.nck") 

 

 If you don’t have the tree and just have information to build one (e.g. DNA sequences) 

you can do this in ape. You can choose among different methods of clustering and different 

models of evolution. 

> ###code block B7 

>  

> data(woodmouse) 

> woodmouse 

15 DNA sequences in binary format stored in a matrix. 

 

All sequences of same length: 965  
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Labels: No305 No304 No306 No0906S No0908S No0909S ... 

 

Base composition: 

    a     c     g     t  

0.307 0.261 0.126 0.306  

> base.freq(woodmouse) 

        a         c         g         t  

0.3065414 0.2613083 0.1260264 0.3061239  

> write.dna(woodmouse,"woodmouse.fas",format="fasta") 

> rodents <- read.dna("woodmouse.fas",format="fasta") 

>  

> rodents[1,] #first sequence 

1 DNA sequences in binary format stored in a matrix. 

 

All sequences of same length: 965  

 

Labels: No305  

 

Base composition: 

    a     c     g     t  

0.304 0.262 0.129 0.306  

> as.character(rodents[1,1:50]) 

      [,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10] [,11] [,12] [,13] 

[,14] [,15] [,16] [,17] 

No305 "n"  "t"  "t"  "c"  "g"  "a"  "a"  "a"  "a"  "a"   "c"   "a"   "c"   

"a"   "c"   "c"   "c"   

      [,18] [,19] [,20] [,21] [,22] [,23] [,24] [,25] [,26] [,27] [,28] 

[,29] [,30] [,31] [,32] [,33] 

No305 "a"   "c"   "t"   "a"   "c"   "t"   "a"   "a"   "a"   "a"   "n"   "t"   

"t"   "a"   "t"   "c"   

      [,34] [,35] [,36] [,37] [,38] [,39] [,40] [,41] [,42] [,43] [,44] 

[,45] [,46] [,47] [,48] [,49] 

No305 "a"   "g"   "t"   "c"   "a"   "c"   "t"   "c"   "c"   "t"   "t"   "c"   

"a"   "t"   "c"   "g"   

      [,50] 

No305 "a"   

> paste(as.character(rodents[1,1:50]),collapse="") 

[1] "nttcgaaaaacacacccactactaaaanttatcagtcactccttcatcga" 

>  

> #calculate phylogeny based on these sequences 

> dist.dna(rodents[1:5,]) 

              No305       No304       No306     No0906S 

No304   0.015975800                                     

No306   0.013815969 0.004210551                         

No0906S 0.019213434 0.013802125 0.009514854             

No0908S 0.017059224 0.011665428 0.007391898 0.012726856 

> rodents.dist<-dist.dna(rodents) 

> as.matrix(dist.dna(rodents[1:5,])) # looks much better 

             No305       No304       No306     No0906S     No0908S 

No305   0.00000000 0.015975800 0.013815969 0.019213434 0.017059224 

No304   0.01597580 0.000000000 0.004210551 0.013802125 0.011665428 
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No306   0.01381597 0.004210551 0.000000000 0.009514854 0.007391898 

No0906S 0.01921343 0.013802125 0.009514854 0.000000000 0.012726856 

No0908S 0.01705922 0.011665428 0.007391898 0.012726856 0.000000000 

>  

> #build a tree using UPGMA 

> cluster<-hclust(rodents.dist) 

> rodents.upgma<-as.phylo(cluster) 

> plot(rodents.upgma,cex=0.75,font=1,no.margin=T) 

>  

> #we can use neighbour joining instead 

> cluster.nj<-nj(rodents.dist) 

> rodents.nj<-as.phylo(cluster.nj) 

> plot(rodents.nj,cex=0.75,font=1,no.margin=T) 

 

 Having several trees it’s good to be able to compare them. 

> ###codeblock B8 

>  

> #compare trees 

> all.equal(rodents.nj,rodents.bionj) 

[1] FALSE 

> #and ignoring branch lengths - i.e. comparring only topologies 

> all.equal(rodents.nj,rodents.bionj,use.edge.length=F) 

[1] TRUE 

>  

> #having a lot of trees you can calculate distances between them 

> dist.topo(rtree(30),rtree(30)) 

[1] 54 

 

 However, real comparison of trees employs testing, either using bootstrapping or 

likelihood methods. Here we’ll bootstrap our NJ tree. Fro those who are interested – see package 

phangorn which offers much more advanced functions for bootstrapping and ML-ing trees. 

> ###code block B9 

>  

> rodents.boot <- 

boot.phylo(rodents.nj,rodents,function(x){nj(dist.dna(x))}, 

+ B=200,block=1) 

> rodents.boot/2 

 [1] 100.0  22.0  53.5  51.5  56.0  42.0  67.5  65.5  87.5  90.0  87.0  

99.5  59.0 

> plot(rodents.nj) 

> nodelabels(rodents.boot/2) 

 

 Some of you may be used to using more traditional approaches in fitting phylogenetic 

models. Falsenstein (1985) proposed method based on phylogenetically independent contrasts, 

i.e. leading to such transformation of the original data that measurements become statistically 

independent (removes any relationships resulting from shared ancestry) and identically 

distributed. In ape there’s on function for doing this – and we’ll try this with some simulated toy 

data on rodents; we’ll use additional data set on rodents since contrasts require the tree to be 

rooted. On the other hand, if you’d like to use packages other than MCMCglmm for comparative 
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analyses, you might want to obtain for a given phylogeny distance matrix to pass it to another 

modelling function. 

> ###code block B10 

>  

> rodents2 <- read.tree("rodents.tre") 

> summary(rodents2) 

 

Phylogenetic tree: rodents2  

 

  Number of tips: 14  

  Number of nodes: 13  

  Branch lengths: 

    mean: 0.02021977  

    variance: 0.0002354209  

    distribution summary: 

    Min.  1st Qu.   Median  3rd Qu.     Max.  

0.002857 0.008928 0.015000 0.030710 0.071430  

  No root edge. 

  First ten tip labels: Apodemus_alpicola  

                        Apodemus_uralensis 

                        Apodemus_flavicollis 

                        Apodemus_sylvaticus 

                        Apodemus_hermonensis 

                        Apodemus_mystacinus 

                        Apodemus_peninsulae 

                        Apodemus_semotus 

                        Apodemus_agrarius 

                        Tokudaia_minutus 

  No node labels. 

> mouseData <- rnorm(14,mean=10,sd=sqrt(5)) 

> mouseCont <- pic(mouseData,rodents2) 

> mouseCont #remember to supress intercept using PICs 

         15          16          17          18          19          20          

21          22  

  2.4808244   8.7577759  10.8454153  -0.2523556   6.7139111 -34.9264549  -

0.6190993   9.9784157  

         23          24          25          26          27  

-36.0750266   8.6993401   0.7376448  19.3082225  23.8880437  

>  

> vcv.phylo(rodents2)[1:3,1:3] 

                  Apodemus_alpicola Apodemus_uralensis Apodemus_flavicollis 

Apodemus_alpicola           0.089999         0.078570             0.075713 

Apodemus_uralensis          0.078570         0.092856             0.075713 

Apodemus_flavicollis        0.075713         0.075713             0.088570 

 

 What else can be done in R with phylogenies? You can extract relevant information from 

phylogenies. Also, for fans of art, different plotting modes are available. 

> ###code block B11 

>  

> #sample data on bird families 
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> data(bird.families) 

> bird.families$tip.label[1:20] 

 [1] "Struthionidae"  "Rheidae"        "Casuariidae"    "Apterygidae"    

"Tinamidae"      

 [6] "Cracidae"       "Megapodiidae"   "Phasianidae"    "Numididae"      

"Odontophoridae" 

[11] "Anhimidae"      "Anseranatidae"  "Dendrocygnidae" "Anatidae"       

"Turnicidae"     

[16] "Indicatoridae"  "Picidae"        "Megalaimidae"   "Lybiidae"       

"Ramphastidae"   

> bird.families<-makeNodeLabel(bird.families)#naming all ancestral nodes 

> #let's choose 4 families and extract frm the phylogeny 

> bird.fam.4 <- drop.tip(bird.families, setdiff(bird.families$tip.label, 

+ some.families)) 

Error in as.vector(y) : object 'some.families' not found 

> vcv.phylo(bird.fam.4,cor=T) 

Error in vcv.phylo(bird.fam.4, cor = T) : object 'bird.fam.4' not found 

> plot(bird.fam.4) 

Error in plot(bird.fam.4) : object 'bird.fam.4' not found 

> plot(bird.families,font=1,cex=0.4) 

> some.families<-c("Certhiidae","Paridae","Gruidae","Struthionidae") 

>  

> bird.fam.30 <- drop.tip(bird.families, setdiff(bird.families$tip.label, 

+ bird.families$tip.label[1:20])) 

> plot(bird.fam.30) 

> plot(bird.fam.30,type="cladogram") 

> plot(bird.fam.30,type="fan") 

> plot(bird.fam.30,type="unrooted") 

> plot(bird.fam.30,type="radial") 

Comparative analysis – simple case  

We’ll use sample data on carnivorous mammals from ape. As there’s no phylogeny there, we 

have to build one by ourselves. I found phylogeny of carnivore families in the Internet and 

transformed it to Newick format. You can load it directly to ape. Note that there’s no information 

on branch lengths, just the topology. After loading we’ll replace the names with the correct 

family names. They must correspond to the names of taxa in the dataset. 

> ###code block B12 

>  

> data(carnivora) 

> carphyl <- read.tree("carnphyl.tre") 

> plot(carphyl) 

> carphyl$tip.label 

[1] "Fel"    "Vive"   "Hyen"   "Cani"   "Must"   "Procyo" "Ursi"   "Ailur"  

> levels(carnivora$Family) 

Error in levels(carnivora$Family) : object 'carnivora' not found 

> carphyl$tip.label<-c("Felidae","Viverridae","Hyaenidae", 

+ "Canidae","Mustelidae","Procyonidae", 

+ "Ursidae","Ailuridae") 

> plot(carphyl) 
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 Let’s try simple model, relating female brain size of mammals to litter size and age of 

independence. 

> ###code block B13 

>  

> summary(carnivora) 

       Order         SuperFamily         animal        Genus    

 Carnivora:112   Caniformia:57   Viverridae :32   Mustela : 9   

                 Feliformia:55   Mustelidae :30   Herpetes: 8   

                                 Felidae    :19   Panthera: 5   

                                 Canidae    :18   Canis   : 4   

                                 Hyaenidae  : 4   Martes  : 4   

                                 Procyonidae: 4   Felis   : 3   

                                 (Other)    : 5   (Other) :79   

                    Species          FW                SW          

 Acinonyx jubatus       :  1   Min.   :  0.050   Min.   :  0.050   

 Ailuropoda melanoleuca :  1   1st Qu.:  1.245   1st Qu.:  1.400   

 Alopex lagopus         :  1   Median :  3.400   Median :  3.895   

 Aonyx capensis         :  1   Mean   : 18.099   Mean   : 20.084   

 Arctictis binturong    :  1   3rd Qu.: 10.363   3rd Qu.: 11.592   

 Arctogalidia trivirgata:  1   Max.   :320.000   Max.   :365.000   

 (Other)                :106                                       

       FB               SB               LS        

 Min.   :  1.00   Min.   :  1.00   Min.   :1.000   

 1st Qu.: 15.25   1st Qu.: 15.68   1st Qu.:2.500   

 Median : 33.00   Median : 33.75   Median :3.000   

 Mean   : 53.40   Mean   : 56.43   Mean   :3.232   

 3rd Qu.: 57.38   3rd Qu.: 57.17   3rd Qu.:3.800   

 Max.   :365.00   Max.   :459.50   Max.   :8.800   

                                   NA's   :2.000   

       GL               BW                WA        

 Min.   : 23.50   Min.   :   0.01   Min.   : 21.0   

 1st Qu.: 53.80   1st Qu.:  41.88   1st Qu.: 54.5   

 Median : 63.00   Median : 116.25   Median : 70.0   

 Mean   : 65.79   Mean   : 249.31   Mean   :104.0   

 3rd Qu.: 73.50   3rd Qu.: 286.88   3rd Qu.:117.0   

 Max.   :168.00   Max.   :1650.00   Max.   :730.0   

 NA's   : 21.00   NA's   :  50.00   NA's   : 49.0   

       AI               LY            AM           IB     

 Min.   :  56.0   Min.   : 96          :57          :55   

 1st Qu.: 183.8   1st Qu.:141   365    : 8   12     :27   

 Median : 365.0   Median :162   730    : 5   6      :13   

 Mean   : 407.8   Mean   :182   913    : 4   24     : 2   

 3rd Qu.: 592.5   3rd Qu.:207   450    : 2   27     : 2   

 Max.   :1080.0   Max.   :408   1095   : 1   4      : 2   

 NA's   :  82.0   NA's   : 63   (Other):35   (Other):11   

>  

> m.b51 <- 

MCMCglmm(FW~LS+GL+as.numeric(AM),data=na.omit(carnivora),verbose=F) 

> plot(m.b51$Sol) 

> plot(m.b51$VCV) 
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> summary(m.b51) 

 

 Iterations = 12991 

 Thinning interval  = 3001 

 Sample size  = 1000  

 

 DIC: 166.9515  

 

 R-structure:  ~units 

 

      post.mean l-95% CI u-95% CI eff.samp 

units      7340     2524    15855      810 

 

 Location effects: FW ~ LS + GL + as.numeric(AM)  

 

               post.mean  l-95% CI  u-95% CI eff.samp pMCMC 

(Intercept)     108.5660 -112.0664  329.0216     1000 0.292 

LS              -12.7827  -34.1070   12.9590     1402 0.264 

GL                0.5361   -1.4051    2.7961     1000 0.568 

as.numeric(AM)   -2.0536   -5.8273    1.1087     1000 0.188 

>  

> names(carnivora)[3]<-"animal" 

> prior.b52 <- list(R=list(V=1,nu=0.002),G=list(G1=list(V=1,nu=0.002))) 

> m.b52 <- MCMCglmm(FW~LS+GL+as.numeric(AM),data=na.omit(carnivora), 

+ verbose=F,random=~animal,prior=prior.b52,pedigree=carphyl) 

Warning messages: 

1: In inverseA(pedigree, nodes = nodes, scale = scale) : 

  no branch lengths: compute.brlen from ape has been used 

2: In MCMCglmm(FW ~ LS + GL + as.numeric(AM), data = na.omit(carnivora),  : 

  some combinations in animal do not exist and 9 missing records have been 

generated 

> plot(m.b52$Sol) 

> plot(m.b52$VCV) 

> summary(m.b52) 

 

 Iterations = 12991 

 Thinning interval  = 3001 

 Sample size  = 1000  

 

 DIC: 166.5641  

 

 G-structure:  ~animal 

 

       post.mean  l-95% CI u-95% CI eff.samp 

animal      3420 0.0003233    13340    215.9 

 

 R-structure:  ~units 

 

      post.mean l-95% CI u-95% CI eff.samp 

units      6940     1888    14724     1000 

 

 Location effects: FW ~ LS + GL + as.numeric(AM)  
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               post.mean  l-95% CI  u-95% CI eff.samp pMCMC 

(Intercept)      96.2407 -129.8394  314.2464     1000 0.354 

LS              -12.1530  -38.5514   13.1992     1000 0.284 

GL                0.6461   -1.3016    2.9291     1000 0.508 

as.numeric(AM)   -1.8809   -5.2790    2.0228     1000 0.272 

>  

> #let's try for simulated data ob bird families 

>  

> bf.sim <- 

rTraitCont(bird.families,sigma=runif(Nedge(bird.families),0.1,0.7)) 

> bf.sim <- data.frame(y=bf.sim,animal=names(bf.sim)) 

> bf.sim[1:20,] 

                         y         animal 

Struthionidae  -0.60573476  Struthionidae 

Rheidae        -2.68284592        Rheidae 

Casuariidae     2.46897329    Casuariidae 

Apterygidae     1.09753708    Apterygidae 

Tinamidae       0.24638486      Tinamidae 

Cracidae       -0.67455764       Cracidae 

Megapodiidae    1.74500202   Megapodiidae 

Phasianidae     0.61040649    Phasianidae 

Numididae       1.65685699      Numididae 

Odontophoridae  0.77349921 Odontophoridae 

Anhimidae      -2.55968724      Anhimidae 

Anseranatidae   1.37302713  Anseranatidae 

Dendrocygnidae  0.05206279 Dendrocygnidae 

Anatidae       -2.81114176       Anatidae 

Turnicidae      2.64692783     Turnicidae 

Indicatoridae  -0.16953127  Indicatoridae 

Picidae        -0.91794680        Picidae 

Megalaimidae    0.82388019   Megalaimidae 

Lybiidae        1.38448623       Lybiidae 

Ramphastidae    0.19388505   Ramphastidae 

> #we'll add some residuals on top 

> err <- rnorm(137,sd=sqrt(3)) 

> bf.sim[,1]<-bf.sim[,1]+err 

> #and replication 

> bf.sim2 <- as.data.frame(bf.sim[sample(1:137,50),]) 

> err2 <- rnorm(50,runif(20,1,2),sqrt(3)) 

> bf.sim2[,1]<-bf.sim2[,1]+err2 

> bf.sim3 <- as.data.frame(bf.sim[sample(1:137,50,replace=T),]) 

> err3 <- rnorm(50,runif(20,1.5,2.5),sqrt(3)) 

> bf.sim3[,1]<-bf.sim3[,1]+err3 

> #and combine the three 

> bf.sim<-rbind(bf.sim,bf.sim2,bf.sim3) 

> summary(bf.sim) 

       y                       animal    

 Min.   :-6.6159   Casuariidae    :  4   

 1st Qu.:-1.9046   Laridae        :  4   

 Median : 0.2256   Pedionomidae   :  4   

 Mean   : 0.2603   Acanthisittidae:  3   
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 3rd Qu.: 2.1467   Climacteridae  :  3   

 Max.   : 9.9202   Cracidae       :  3   

                   (Other)        :216   

>  

> #prior is the same 

>  

> m.b53 <- MCMCglmm(y~1,random=~animal,pedigree=bird.families, 

+ data=bf.sim,verbose=F,prior=prior.b52) 

Warning message: 

In MCMCglmm(y ~ 1, random = ~animal, pedigree = bird.families, data = 

bf.sim,  : 

  some combinations in animal do not exist and 134 missing records have 

been generated 

> plot(m.b53$VCV) 

> posterior.mode(m.b53$Sol) 

(Intercept)  

  0.7599772  

>  

> #not accounting for phylogenetic depndence yields false picture 

> m.b53a <- MCMCglmm(y~1,data=bf.sim,verbose=F) 

> posterior.mode(m.b53a$Sol) 

(Intercept)  

  0.2946834  

>  

> #is in ordinary animal model we can estimate so called phylogenetic 

heritability 

> #the proportion of total variance explained by phylogenetic effects of 

shared ancestry 

>  

> hp2 <- m.b53$VCV[,"animal"]/rowSums(m.b53$VCV) 

> posterior.mode(hp2) 

     var1  

0.7400869  

> HPDinterval(hp2) 

         lower     upper 

var1 0.6475381 0.8305757 

attr(,"Probability") 

[1] 0.95 

 

As you can see, not accounting for phylogeny may yield false picture of the reality underlying 

measured traits. We could expand this model and analyse more than one trait and see if they 

evolve in a correlated fashion across the phylogeny – which would be equivalent of calculating 

ordinary genetic correlation in an animal model framework. 

Random regression – expanding random interactions 

In the previous chapter we learned how to fit categorical random interactions. It’s equal to 

allowing for differences in the intercept of our model across the levels of random term, crossed 

with the chose fixed effect. However, sometimes it is sensible to add also differences in slopes 

among individuals/units. Such models are called random regression models. We will use 
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strategy from Hadfield (2010) for the longitudinal data on chicken growth. First, let’s analyse it 

with a simple model. Fitting random effect of chick id means that we want to have separate 

intercepts for each chick. As the data are not linear will stick to some polynomial 

approximations of curvilinearity. 

> ###code block B14 

>  

> data(ChickWeight) 

> xyplot(weight~Time|Chick,data=ChickWeight) 

>  

> prior.b61 <- list(R=list(V=1e-16,nu=-2),G=list(G1=list(V=1,nu=1))) 

> m.b61 <- MCMCglmm(weight~Diet+poly(Time,2,raw=T),random=~Chick, 

+ data=ChickWeight, verbose=F, pr=T, prior=prior.b61, 

+ saveX=T, saveZ=T) 

> pop.int <- posterior.mode(m.b61$Sol[,1]) 

> pop.slope <- posterior.mode(m.b61$Sol[,5]) 

> pop.quad <- posterior.mode(m.b61$Sol[,6]) 

> chick.int <- posterior.mode(m.b61$Sol[,c(7:56)]) 

>  

> time <- ChickWeight$Time[1:12] 

> plot(pop.int+pop.slope*I(time^1)+pop.quad*I(time^2)~time, 

+ type="l",lwd=2,ylim=c(-50,400)) 

> for(i in 1:50) { 

+ lines(pop.int+chick.int[i]+pop.slope*I(time^1)+ 

+ pop.quad*I(time^2)~time,lty=3,col="red") 

+ } 

>  

> #we can print predictions from our model for each chick by combining 

> #multiplying desing matrix W=[X,Z] for effects with  

> #parameter vector theta=[beta,u] 

> W1 <- cBind(m.b61$X,m.b61$Z) 

> theta <- posterior.mode(m.b61$Sol) 

> prediction1 <- W1 %*% theta 

> xyplot(weight+prediction1[,1]~Time|Chick,data=ChickWeight) 

 

 As expected, model fits well, predictions look reasonable. However, slight differences are 

visible between predicted and real curves for some chicks. Thus, we might as well allow for 

differences in slopes. In the simpler model in random effects we fitted just single variance, i.e. 

σ2(Intercept). Interacting random term with both intercept and slope yields 2x2 covariance 

structure: 

  hic  [
   n        
    n             

   n                  
 ] 

> ###code block B15 

>  

> prior.b62 <- list(R=list(V=1e-16,nu=-2),G=list(G1=list(V=diag(2),nu=2))) 

> m.b62 <- 

MCMCglmm(weight~Diet+poly(Time,2,raw=T),random=~us(1+Time):Chick, 

+ data=ChickWeight, verbose=F, pr=T,prior=prior.b62,saveX=T,saveZ=T) 

> plot(m.b62$VCV) 
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Waiting to confirm page change... 

> diag(autocorr(m.b62$VCV)[2,,]) 

(Intercept):(Intercept).Chick        Time:(Intercept).Chick  

                 0.0919710564                  0.0309195190  

       (Intercept):Time.Chick               Time:Time.Chick  

                 0.0309195190                 -0.0003973471  

                        units  

                -0.0392904703  

> r.int.slope <- m.b62$VCV[,2]/sqrt(m.b62$VCV[,1]*m.b62$VCV[,4]) 

> posterior.mode(r.int.slope) 

      var1  

-0.9778924  

> #cor close to space boundary - should be run for longer 

>  

> #could do predictions by hand or like here by using predict() 

> xyplot(weight+predict(m.b62,marginal=NULL)~Time|Chick,data=ChickWeight) 

Warning message: 

In predict.MCMCglmm(m.b62, marginal = NULL) : 

  predict.MCMCglmm is still developmental - be careful 

> #looks MUCH better - may could be better  

> #adding second random slope for quadratic term? 

> prior.b63 <- list(R=list(V=1e-16,nu=-2),G=list(G1=list(V=diag(3),nu=3))) 

> m.b63 <- MCMCglmm(weight~Diet+poly(Time,2,raw=T), 

+ random=~us(1+poly(Time,2,raw=T)):Chick, 

+ data=ChickWeight, verbose=F, pr=T, 

+ prior=prior.b63,saveX=T,saveZ=T) 

> xyplot(weight+predict(m.b63,marginal=NULL)~Time|Chick,data=ChickWeight) 

Warning message: 

In predict.MCMCglmm(m.b63, marginal = NULL) : 

  predict.MCMCglmm is still developmental - be careful 

>  

> #DICs confirm its the best model - hence chicks differ both in  

> #intercepts and (quadratic)slopes 

> m.b61$DIC;m.b62$DIC;m.b63$DIC 

[1] 5525.291 

[1] 4544.456 

[1] 3932.947 

>  

> #to confirm we could see if REML estimators corroborate these conclusions 

> library(lme4) 

 

Attaching package: 'lme4' 

 

The following object(s) are masked from 'package:coda': 

 

    HPDinterval 

 

The following object(s) are masked from 'package:stats': 

 

    AIC 
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> m.b61reml <- 

lmer(weight~Diet+poly(Time,2,raw=T)+(1|Chick),data=ChickWeight) 

> summary(m.b61reml)@AICtab[1] 

      AIC 

 5578.963 

>  

> m.b62reml <- lmer(weight~Diet+poly(Time,2,raw=T)+(1+Time|Chick), 

+ data=ChickWeight) 

> summary(m.b62reml)@AICtab[1] 

      AIC 

 4732.387 

>  

> m.b63reml <- 

lmer(weight~Diet+poly(Time,2,raw=T)+(1+poly(Time,2,raw=T)|Chick), 

+ data=ChickWeight) 

> summary(m.b63reml)@AICtab[1] 

      AIC 

 4267.013 

> detach(package:lme4) 

 

 Unfortunately, in pursue for the best model we forgot about one thing. In case of random 

slope models we should check not only if model is the best-fitting one, but also how well it’s 

variance structure describes variance in the real data. Particularly, having intercept + n slopes 

fitted as random we expect that variance should change as the function of n-th degree with the 

continuous predictor. We’ll how it works for toy data and then inspect our models. In general, 

from linear modelling theory, variance in the response should follow something like this: 

Var[y]=diag(ZVZ’) where Z is the design matrix for random effects and V is estimated covariance 

matrix. We can calculate this directly, having saved design matrices in our models (saveZ=T). 

However, here we’ll create our own Z to avoid problems caused by duplication of records (we 

had several Diets and several Time points for every Chicken). We create hypothetical design 

matrix as if there was one chicken measured over 100 time points. 

> ###code block B16 

>  

> toyslope <- rnorm(30)#30 random slopes ~N(0,1) 

> #prepare space for the plots 

> plot(0,type="n",xlim=c(-1,1),ylim=c(-3,3),ylab="y",xlab="time") 

> for (i in 1:30) { #for each of 30 slopes 

+ abline(a=0,b=toyslope[i]) 

+ } 

>  

> time<-seq(0,21,length=100) 

> polynomial<-leg(time,2,normalized=F) 

Loading required package: polynom 

> #better than poly because generates first column of ones giving 

> #appropriate design matrix for fixed and random slope effects 

>  

> #coeficient for fixed effects 

> beta1 <- c(posterior.mode(m.b61$Sol[,1]),posterior.mode(m.b61$Sol[,5]), 

+ posterior.mode(m.b61$Sol[,6])) 
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> beta2 <- c(posterior.mode(m.b62$Sol[,1]),posterior.mode(m.b62$Sol[,5]), 

+ posterior.mode(m.b62$Sol[,6])) 

> beta3 <- c(posterior.mode(m.b63$Sol[,1]),posterior.mode(m.b63$Sol[,5]), 

+ posterior.mode(m.b63$Sol[,6])) 

>  

> #covariance matrices and residuals 

>  

> VCV1 <- matrix(posterior.mode(m.b61$VCV)[1],1,1)#single variance 

> VCV2 <- matrix(posterior.mode(m.b62$VCV)[1:(2^2)],2,2)#4 parameters 

> VCV3 <- matrix(posterior.mode(m.b63$VCV)[1:(3^2)],3,3)#9 parameters 

> units1 <- posterior.mode(m.b61$VCV)[2] 

> units2 <- posterior.mode(m.b62$VCV)[5]#5th parameter cause 4 for 

(co)variances 

> units3 <- posterior.mode(m.b63$VCV)[10]#10th cause 9 pars for 

(co)variances 

>  

> plot(weight~Time,data=ChickWeight,cex.lab=1.5) 

> mu1 <- polynomial %*% beta1 #population line across time 

> sd1 <- sqrt(units1+diag(polynomial[,1,drop=F]%*% 

+ VCV1%*%t(polynomial[,1,drop=F]))) 

> #%*% multiplies matrices; drop lets matrix be a matrix after extracting 

one 

> #dimension, otherwise it would be a vector and would cause problems when 

> #trying to multiply to get ZVZ'; by using first column of polynomial we 

> #create 'new' Z matrix appropriate for the time sequence we have, of 

length 

> #100 rather than 12 

> lines(mu1~time,lwd=2) 

> lines(I(mu1+1.96*sd1)~time,lty=2,lwd=1,col="red") 

> lines(I(mu1-1.96*sd1)~time,lty=2,lwd=1,col="red") 

>  

> plot(weight~Time,data=ChickWeight,cex.lab=1.5) 

> mu2 <- polynomial %*% beta2 #population line across time 

> sd2 <- sqrt(units2+diag(polynomial[,1:2,drop=F]%*%VCV2%*% 

+ t(polynomial[,1:2,drop=F]))) 

> lines(mu2~time,lwd=2) 

> lines(I(mu2+1.96*sd2)~time,lty=2,lwd=1,col="red") 

> lines(I(mu2-1.96*sd2)~time,lty=2,lwd=1,col="red") 

> #very good fit of variance change to data 

>  

> plot(weight~Time,data=ChickWeight,cex.lab=1.5,ylim=c(-150,600)) 

> mu3 <- polynomial %*% beta3 #population line across time 

> sd3 <- sqrt(units2+diag(polynomial[,1:3,drop=F]%*%VCV3%*% 

+ t(polynomial[,1:3,drop=F]))) 

> lines(mu3~time,lwd=2) 

> lines(I(mu3+1.96*sd3)~time,lty=2,lwd=1,col="red") 

> lines(I(mu3-1.96*sd3)~time,lty=2,lwd=1,col="red") 

> #very poor  fit of variance change to data, 2nd model seems the best! 

 

Multiple responses – lessons from money spending 
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I’m many time you’ve asked yourself if an univariate model is appropriate. Nature by definition 

is multivariate, and not only that. Complex patterns of correlations exist between these 

variables. Many techniques exist to deal with such complex data, of which MANOVA should be 

one of better known. Problem with multivariate statistics is that they’re often misused and 

abused. It always looks fancier and more trendy when you include complex multivariate models 

but beware: they’re not always applicable. Here we’ll learn several applications of multivariate 

models where it’s essential to simultaneously model several variables. 

 First example shows that plain methods such as simple regression may not discover 

patterns in our data. It comes from Hadfield’s notes on MCMCglmm and serves as good 

introduction to multivariate models. We’ll use simulated data on spending money on car and 

holidays and ask if simple regression of one against the other is enough in describing underlying 

relationships. After that we’ll develop simple bivariate model and learn its characteristic 

parameters. In general, MCMCglmm gives us control over almost every aspect of such model. 

> ###code block 17 

>  

> id <- gl(200,4) #200 people, 4 records for each 

> id[1:50] 

 [1] 1  1  1  1  2  2  2  2  3  3  3  3  4  4  4  4  5  5  5  5  6  

[22] 6  6  6  7  7  7  7  8  8  8  8  9  9  9  9  10 10 10 10 11 11 

[43] 11 11 12 12 12 12 13 13 

200 Levels: 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 ... 200 

> av.wealth<-rlnorm(200,0,1) 

> ac.wealth<-av.wealth[id]+rlnorm(800,0,1) 

> av.ratio<-rbeta(200,10,10)#beta is good distribution for ratios 

> ac.ratio<-rbeta(800,2*(av.ratio[id]),2*(av.ratio[id])) 

> y.car<-(ac.wealth*ac.ratio)^0.25 

> y.hol<-(ac.wealth*(1-ac.ratio))^0.25 

> spend<-data.frame(y.hol=y.hol,y.car=y.car,id=id) 

>  

> #simple regression - are these two related? 

> summary(lm(y.car~y.hol,data=spend)) 

 

Call: 

lm(formula = y.car ~ y.hol, data = spend) 

 

Residuals: 

     Min       1Q   Median       3Q      Max  

-0.89103 -0.18154 -0.01299  0.18072  1.16946  

 

Coefficients: 

            Estimate Std. Error t value Pr(>|t|)     

(Intercept)  1.00768    0.03726   27.05   <2e-16 *** 

y.hol        0.01957    0.03492    0.56    0.575     

--- 

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1  

 

Residual standard error: 0.2922 on 798 degrees of freedom 

Multiple R-squared: 0.0003934,  Adjusted R-squared: -0.0008593  

F-statistic: 0.314 on 1 and 798 DF,  p-value: 0.5754  
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>  

> #accounting for random variation doesn't change the point 

> summary(m.b7a <- MCMCglmm(y.car~y.hol,random=~id,data=spend,verbose=F)) 

 

 Iterations = 12991 

 Thinning interval  = 3001 

 Sample size  = 1000  

 

 DIC: 218.2472  

 

 G-structure:  ~id 

 

   post.mean l-95% CI u-95% CI eff.samp 

id   0.02024  0.01252   0.0289      852 

 

 R-structure:  ~units 

 

      post.mean l-95% CI u-95% CI eff.samp 

units   0.06681  0.05946  0.07436     1000 

 

 Location effects: y.car ~ y.hol  

 

            post.mean l-95% CI u-95% CI eff.samp  pMCMC     

(Intercept)   1.13230  1.05227  1.21743     1000 <0.001 *** 

y.hol        -0.10219 -0.18636 -0.03304     1000  0.012 *   

--- 

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1  

>  

> #is this model valid? univariate model assumes that there is causal link 

> #between spending money on holiday and spending it on car 

> #however we've model the data so that not only spending on car affects 

> #spending on holiday - or vice versa - but also there's some year-to-year 

> #variation in the income, affecting the spendings 

> #adopting regression ignores variation in x and hence in 

> #(unmeasured) income; we'll model these variabilities fitting 

> #both spendings as two separate traits 

>  

> prior.b7<-list(R=list(V=diag(2),nu=2),G=list(G1=list(V=diag(2),nu=2))) 

> m.b7 <- MCMCglmm(cbind(y.hol,y.car)~trait-1, random=~us(trait):id, 

+ rcov=~us(trait):units,data=spend,family=c("gaussian","gaussian"), 

+ verbose=F,prior=prior.b7) 

> cor(matrix(colMeans(m.b7$VCV),2,2)) 

     [,1] [,2] 

[1,]    1   -1 

[2,]   -1    1 

> #let's look at regression coefficients describing different parts of 

variability 

> #in this data: a = Cov/Var 

>  

> id.r <- m.b7$VCV[,2]/m.b7$VCV[,1] 

> res.r <- m.b7$VCV[,6]/m.b7$VCV[,5] 



Szymon Drobniak – Advanced approaches to linear modeling and multivariate statistics in R  

Uppsala, 18-21.01.2010 

72 

 

> 

plot(mcmc.list(m.b7a$Sol[,"y.hol"],id.r,res.r),density=F,col=c("red","green

","blue")) 

> #trends are opposite depending on the part of variation we look on 

> #note that if the data were generated so that relationship between 

spending on holidays 

> #and car was purely causal 

> spend$y.hol2<-rnorm(200,0,sqrt(2))[spend$id]+rnorm(800,0,sqrt(1)) 

> spend$y.car2<-spend$y.hol2*-

0.3+rnorm(200,0,sqrt(1))[spend$id]+rnorm(800,0,sqrt(2)) 

>  

> m.b7ab <- MCMCglmm(y.car2~y.hol2,random=~id,data=spend,verbose=F) 

> m.b7b <- MCMCglmm(cbind(y.hol2,y.car2)~trait-1, random=~us(trait):id, 

+ rcov=~us(trait):units,data=spend,family=c("gaussian","gaussian"), 

+ verbose=F,prior=prior.b7) 

> id.r2 <- m.b7b$VCV[,2]/m.b7b$VCV[,1] 

> res.r2 <- m.b7b$VCV[,6]/m.b7b$VCV[,5] 

> 

plot(mcmc.list(m.b7ab$Sol[,"y.hol2"],id.r2,res.r2),density=F,col=c("red","g

reen","blue")) 

> #slopes are wirtually the same up to Monte Carlo error 

 

 OK, but what’s the point? When we should adopt such multiple-response modelling? In 

general every time when causality is not obvious. Moreover, every time we want to model 

covariance of several (2 or more) variables with respect to some sources of variation – we 

should always employ multivariate model. Below we will build on already known animal model 

and try to look for correlations arising between two phenotypic traits at the genetic level. It’s 

important to realize that such models can be generalized to every random effect in action. Here 

we’ll work with additive genetic effect, which differs only in the use of additional data, the 

pedigree. However, we could model correlations arising in every random effect – we just have to 

put these effects into appropriate variance functions. 

> ###code block B18 

>  

> data(BTdata) 

> data(BTped) 

> #2x2 prior since we model 2 traits - tarsus and back color 

> prior.b81 <- list(R=list(V=diag(2),nu=1.002), 

+ G=list(G1=list(V=diag(2),nu=1.002), 

+ G2=list(V=1,nu=0.002))) 

> m.b81 <- MCMCglmm(cbind(tarsus,back)~trait+sex:trait-1, 

+ random=~us(trait):animal+fosternest, 

+ rcov=~us(trait):units,verbose=F,data=BTdata, 

+ pedigree=BTped,nitt=70000,burnin=15000,thin=70, 

+ family=c("gaussian","gaussian"),prior=prior.b81) 

Warning message: 

In MCMCglmm(cbind(tarsus, back) ~ trait + sex:trait - 1, random = 

~us(trait):animal +  : 

  some combinations in us(trait):animal do not exist and 212 missing 

records have been generated 
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> plot(m.b81$VCV)#traces show autocorrelation and probably nitt around 

200000 would be required 

Waiting to confirm page change... 

Waiting to confirm page change... 

> #we'll go on with these results as running longer model would require >15 

min! 

> #both back colour and tarsus seem to be genetically controlled 

> #but what about genetic correlation? 

> #rG=Cov/sqrt(Var1*Var2) 

> rG<-m.b81$VCV[,2]/sqrt(m.b81$VCV[,1]*m.b81$VCV[,4]) 

> posterior.mode(rG) 

      var1  

-0.4546824  

> HPDinterval(rG)#rG is not zero truncated so can be tested using CIs 

          lower       upper 

var1 -0.6567884 -0.03121054 

attr(,"Probability") 

[1] 0.9503185 

 

 Model clearly states that there’s no correlation on genetic level in our system. However, 

we could treat as two traits not only different characters. Recently it’s very popular to look at 

intersexual genetic correlations. It’s very straightforward to fit them but be careful. As each 

individual is measured only for one trait (you can be either male or female, never both) residual 

covariance cannot be estimated and hence we use idh() variance function. 

> ###code block B19 

>  

> prior.b82 <- 

list(R=list(V=diag(3),nu=2.002),G=list(G1=list(V=diag(3),nu=2.002), 

+ G2=list(V=1,nu=0.002))) 

> m.b82 <- MCMCglmm(tarsus~sex, 

+ random=~us(sex):animal+fosternest, 

+ rcov=~idh(sex):units,verbose=F,data=BTdata, 

+ nitt=50000,burnin=12000,thin=50,prior=prior.b82,pedigree=BTped) 

Warning message: 

In MCMCglmm(tarsus ~ sex, random = ~us(sex):animal + fosternest,  : 

  some combinations in us(sex):animal do not exist and 2292 missing records 

have been generated 

> posterior.mode(m.b82$VCV) 

  Fem:Fem.animal  Male:Fem.animal   UNK:Fem.animal  

      0.47857343       0.31716790       0.27689074  

 Fem:Male.animal Male:Male.animal  UNK:Male.animal  

      0.31716790       0.47316007       0.32215996  

  Fem:UNK.animal  Male:UNK.animal   UNK:UNK.animal  

      0.27689074       0.32215996       0.46095586  

      fosternest        Fem.units       Male.units  

      0.06331766       0.27364180       0.36449503  

       UNK.units  

      0.22388796  

> rMF<-m.b82$VCV[,2]/sqrt(m.b82$VCV[,1]*m.b82$VCV[,5]) 

> HPDinterval(rMF) 
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         lower     upper 

var1 0.4642555 0.8228062 

attr(,"Probability") 

[1] 0.95 

> posterior.mode(rMF) 

     var1  

0.6943073  

> #rG is not zero truncated so can be tested using CIs 

 

 As an exercise see if there’s any evidence for genetic covariance between tarsus length 

and birth weight in gryphons. 
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Part 3 

Overview 

1. DIY - Meta-analysis 

a. How to define? 

b. Interpretation 

c. Comparative phylogenetic meta-analysis 

2. DIY – advanced issues in MCMCglmm 

a. Parameter expanded priors and their usefulness 

b. Zero-inflated and Hurdle models 

c. Zero-altered models 

d. (Time permitting) Recursive models – using non-standard (co)variance 

structures 

3. DIY – how to analyse survival data in R? 

Meta-analysis 

Today we’ll extend what we’ve learned yesterday and fit meta-analysis. Meta-analytical 

approach became very popular recently as it allows for answering very general questions. In its 

essence meta-analysis is very simple – instead of analysis raw data you take already calculated 

trends/statistics and look at their variability. In general, meta-analysis asks if predicted values of 

statistics holds after accounting for many studies, or if predicted relationship exists at the level 

of many  studies. In such a case you assume that any error (residual variation) in our data is due 

to error in estimating statistics. In other words we can insert this error as some a priori known 

“residuals”. Note, that sometimes meta-analyst is able to get accurate “raw” data from 

publications. In this case we use ordinary GLMM with response and estimated residual variance 

(one of the best examples is Cornwallis et al. (2010)). 

 Here we’ll use example from Adams (2007). He examined if there are any body size 

clines in mammals, i.e. if mammals are larger in larger latitudes, where the climate is cooler. He 

gathered data on different mammal taxa from many papers, and for each paper he calculated 

effect size as the correlation between mammal body size and latitude. Following his paper and 

general strategy of meta-analysis we’ll estimate measurement error (sampling variance of the 

statistic) based on the number of geographic locations from which data were available in each 

study. At first we’ll try simple meta-analysis, ignoring any phylogenetic dependence of examined 

taxa. 

> ###code block C1 

>  

> library(MCMCglmm) 

Loading required package: tensorA 

 

Attaching package: 'tensorA' 

 

The following object(s) are masked from 'package:base': 
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    norm 

 

Loading required package: Matrix 

Loading required package: lattice 

 

Attaching package: 'Matrix' 

 

The following object(s) are masked from 'package:base': 

 

    det 

 

Loading required package: coda 

Loading required package: ape 

Loading required package: corpcor 

Warning message: 

package 'tensorA' was built under R version 2.12.0  

> clines <- read.csv("mamm_clines.csv",head=T) 

> clines<-clines[,-4] 

> clines$FisherZ<-0.5*log((1+clines$corr)/(1-clines$corr)) 

> #effect size 

> clines$mev<-1/(clines$N-3)#measurement error 

> clines$weight<-1/clines$mev 

> #weights if analysing in ordinary lm/lmer/glm/lme 

>  

> prior.c1 <- list(R=list(V=1,nu=0.002)) 

>  

> m.c11 <- MCMCglmm(FisherZ~1, verbose=F, prior=prior.c1, 

+ data=clines) 

> summary(m.c11) 

 

 Iterations = 12991 

 Thinning interval  = 3001 

 Sample size  = 1000  

 

 DIC: 97.02173  

 

 R-structure:  ~units 

 

      post.mean l-95% CI u-95% CI eff.samp 

units     0.649   0.3998   0.9898     1000 

 

 Location effects: FisherZ ~ 1  

 

            post.mean l-95% CI u-95% CI eff.samp pMCMC   

(Intercept)   0.29285  0.06895  0.56036     1000 0.016 * 

--- 

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1  

>  

> #we add sampling error of statistics mev 

> m.c12 <- MCMCglmm(FisherZ~1, verbose=F, prior=prior.c1, 

+ data=clines, 
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+ mev=clines$mev) 

Loading required package: polynom 

> summary(m.c12) 

 

 Iterations = 12991 

 Thinning interval  = 3001 

 Sample size  = 1000  

 

 DIC: 88.56011  

 

 R-structure:  ~units 

 

                                             post.mean 

leg(mev, -1, FALSE):leg(mev, -1, FALSE).meta         1 

                                             l-95% CI 

leg(mev, -1, FALSE):leg(mev, -1, FALSE).meta        1 

                                             u-95% CI 

leg(mev, -1, FALSE):leg(mev, -1, FALSE).meta        1 

                                             eff.samp 

leg(mev, -1, FALSE):leg(mev, -1, FALSE).meta        0 

 

 Location effects: FisherZ ~ 1  

 

            post.mean  l-95% CI  u-95% CI eff.samp pMCMC   

(Intercept)  0.231696 -0.002097  0.488288     1000  0.06 . 

--- 

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1  

> plot(m.c12) 

Waiting to confirm page change... 

>  

> plot(corr~N,data=clines,type="p",pch=20,ylab="Correlation", 

+ xlab="N locations") 

> abline(h=mean(clines$corr),lwd=1,lty=3) 

>  

> #both ordinary metanalysis and funell plot  

> #indicate that net effects 

> #exists and correlation is positive 

> #what if we take phylogeny into account? 

 

 It seems that there’s an overall tendency in mammals to be bigger as they live further 

from the equator. If this phenomenon was due to ecological processes it might indicate that, as 

endotherms, mammals tend to be larger in cooler climate to conserve heat. Such pattern would 

thus indicate that during evolution mammals evolved this mechanism of saving body heat. 

However, such correlation of body size and latitudinal distribution could also arise simply 

during evolutionary history as a result of non-random migration patterns etc. If so we would 

expect that closely related species would show similar relationship of body size vs. latitude; in 

other words, in such a scenario phylogenetic variation would explain large proportion of 

variance in our effect size measures. To test this we perform comparative meta-analysis, taking 

into account phylogeny of mammals. As it turns out – the overall effect disappears clearly 

showing that any observed relationships are only due to shared evolutionary history. 
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> ###code block C2 

>  

> library(ape) 

> mammals <- read.nexus("mammals.nex") 

> plot(mammals,cex=0.75) 

>  

> names(clines)[1]<-"animal" 

> prior.c2 <- list(R=list(V=1,nu=0.002), 

+ G=list(G1=list(V=1,nu=0.002))) 

> m.c13 <- MCMCglmm(FisherZ~1, verbose=F, prior=prior.c2, 

+ data=clines, 

+ mev=clines$mev,random=~animal, 

+ pedigree=mammals, 

+ nitt=150000,burnin=30000,thin=150) 

Warning message: 

In MCMCglmm(FisherZ ~ 1, verbose = F, prior = prior.c2, data = clines,  : 

  some combinations in animal do not exist and 34 missing records have been 

generated 

> plot(m.c13) 

Waiting to confirm page change... 

> summary(m.c13) 

 

 Iterations = 149851 

 Thinning interval  = 30001 

 Sample size  = 800  

 

 DIC: 58.62508  

 

 G-structure:  ~animal 

 

       post.mean  l-95% CI u-95% CI eff.samp 

animal    0.3707 0.0003644   0.9974    577.9 

 

 R-structure:  ~units 

 

      post.mean l-95% CI u-95% CI eff.samp 

units    0.2259 0.001698   0.4743    512.4 

 

 Location effects: FisherZ ~ 1  

 

            post.mean l-95% CI u-95% CI eff.samp pMCMC 

(Intercept)   0.34912 -0.09985  0.91288    699.7  0.13 

> diag(autocorr(m.c13$VCV)[2,,]) 

                                      animal  

                                   0.1605732  

leg(mev, -1, FALSE):leg(mev, -1, FALSE).meta  

                                         NaN  

                                       units  

                                   0.2185705  

> #should be ran for longer - >300000 

> #BUT effect we looked for disappeared... 

> #conclusions? 
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Advanced issues – parameter expansion 

One drawback of using MCMC is it’s randomness and sensitivity to the i-1th values of the chain. In 

practise it means that if in our model some variance components yield low values, close to zero, 

the chain may be trapped at some low value close to zero causing mixing-problems and in 

general poor convergence. It may also happen when some parameters, such as correlations, are 

close their space boundaries (-1 and 1). Such problems arise especially when residual variance 

per se cannot be estimated, as it is in binomial or Poisson models. 

We can try alleviate these problems by using stronger priors – or improper priors. 

However, there’s one much better solution caused parameter expansion. Assume we have the 

design matrix W of the form [X Z1 Z2 … Zk]. We can rescale this matrix (and thus – whole MC-

sampled parameter space) by some parameters α = [1, α1, α2, … αk]. This would yield Wα = [X Z1 

α1 Z2 α2 … Zk αk]. With these alphas we would actually sample new location effects that could be 

rescaled to original values: θ = (Iβ⨁ki=1Iu{i} ⋅ αi)θα. Likewise, rescaling could also be applied to 

(co)variance matrices: V = Diag(αV) Vα Diag(αV)’. 

Here, we’ll analyse data on sex-ration in blue tits (you already know this dataset) using 

both parameter-expanded and standard priors. We’ll compare mixing properties of these runs. 

> ###code block C3 

>  

> data(BTdata) 

> #we'll remove unkown sex 

> BTdata$sex[which(BTdata$sex=="UNK")]<-NA 

> BTdata$sex<-gdata::drop.levels(BTdata$sex) 

> #we remove UNK level from the variable 

>  

> prior.c31 <-list(R=list(V=1,fix=1), 

+ G=list(G1=list(V=1,nu=0.002, 

+ alpha.mu=0,alpha.V=1000))) 

> prior.c32 <- list(R=list(V=1,fix=1), 

+ G=list(G1=list(V=1,nu=0.002))) 

> m.c4a <- MCMCglmm(sex~1,random=~dam,data=BTdata, 

+ family="categorical",prior=prior.c31,verbose=F, 

+ nitt=25000,burnin=5000,thin=25) 

> m.c4b <- MCMCglmm(sex~1,random=~dam,data=BTdata, 

+ family="categorical",prior=prior.c32,verbose=F, 

+ nitt=25000,burnin=5000,thin=25) 

> plot(mcmc.list(m.c4a$VCV[,"dam"],m.c4b$VCV[,"dam"]), 

+ col=c("red","green")) 

> effectiveSize(m.c4a$VCV[,"dam"]) 

   var1  

378.695  

> effectiveSize(m.c4b$VCV[,"dam"]) 

    var1  
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157.4276  

>  

>  

> #we might try equlize prior densities  

> #for both models and use alternative priors 

> #proper for PE model and improper  

> #flat for sd for the second model 

> prior.c31 <-list(R=list(V=1,fix=1), 

+ G=list(G1=list(V=1,nu=1, 

+ alpha.mu=0,alpha.V=1000))) 

> prior.c32 <- list(R=list(V=1,fix=1), 

+ G=list(G1=list(V=1e-16,nu=-1))) 

> m.c4a <- MCMCglmm(sex~1,random=~dam,data=BTdata, 

+ family="categorical",prior=prior.c31,verbose=F, 

+ nitt=25000,burnin=5000,thin=25) 

> m.c4b <- MCMCglmm(sex~1,random=~dam,data=BTdata, 

+ family="categorical",prior=prior.c32,verbose=F, 

+ nitt=25000,burnin=5000,thin=25) 

> plot(mcmc.list(m.c4a$VCV[,"dam"],m.c4b$VCV[,"dam"]), 

+ col=c("red","green")) 

> effectiveSize(m.c4a$VCV[,"dam"]) 

    var1  

410.4393  

> effectiveSize(m.c4b$VCV[,"dam"]) 

    var1  

111.8734 

 

 The reason for which second set of priors yields similar densities is that in expanded 

priors distribution of variance is no longer Inverse Wishart. It follows non-central F distribution 

of the form df(v/alpha.V,df1=1,df2=nu,ncp=(alpha.mu^2)/alpha.V), which for 

standard deviations yields density: 2*dt(sqrt(v)/sqrt(alpha.V), 

df=nu,ncp=alpha.mu/sqrt(alpha.V)). Second distribution is equal to the proper 

Cauchy prior for standard deviation. As you can see parameter expansion is useful when inverse 

gamma priors are to strong and flat priors, apart from being improper, yield distorted SD 

posteriors. 

 We’ll see how much prior specification influences posterior distributions using the 

example provided by Gelman (2006), original proposer of parameter expansion. 

> ###code block C4 

> 

> library(rbugs) 

> data(schools) 

>  

> prior.c41 <- list(R=list(V=diag(schools$sd^2),fix=1), 

+ G=list(G1=list(V=1e-16,nu=-1))) 

> m.c41 <- MCMCglmm(estimate~1,random=~school,rcov=~idh(school):units, 

+ data=schools,prior=prior.c41,verbose=F) 

> sd1<-sqrt(m.c41$VCV[,1]) 

> ####OPTIONAL CODE#### 
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> hist(sd1[which(sd1<35)],breaks=40) 

> abline(h=50) 

> ####END OF OPTIONAL CODE#### 

>  

> prior.c42 <- list(R=list(V=diag(schools$sd^2),fix=1), 

+ G=list(G1=list(V=1,nu=0.002))) 

> m.c42 <- MCMCglmm(estimate~1,random=~school,rcov=~idh(school):units, 

+ data=schools,prior=prior.c42,verbose=F) 

> sd2<-sqrt(m.c42$VCV[,1]) 

> ####OPTIONAL CODE#### 

> hist(sd2[which(sd2<35)],breaks=40) 

> xv<-seq(1e-16,35,length=200) 

> dv<-MCMCpack::dinvgamma(xv,shape=0.001,scale=0.001) 

> lines(1000*sqrt(dv)~xv) 

> ####END OF OPTIONAL CODE#### 

>  

> prior.c43 <- list(R=list(V=diag(schools$sd^2),fix=1), 

+ G=list(G1=list(V=1,nu=1,alpha.mu=0,alpha.V=25^2))) 

> m.c43 <- MCMCglmm(estimate~1,random=~school,rcov=~idh(school):units, 

+ data=schools,prior=prior.c43,verbose=F) 

> sd3<-sqrt(m.c43$VCV[,1]) 

> ####OPTIONAL CODE#### 

> hist(sd3[which(sd2<35)],breaks=40) 

>  

> dv<-(1/pi)*(25/((xv)^2+25^2)) 

> lines(4000*dv~xv) 

> ####END OF OPTIONAL CODE#### 

 

 You can see that prior distribution largely affects the outcome of the analysis, mainly in 

the form of effective sample size and mixing properties of the chain. As general indications, I 

would use parameter expansion every time chain experiences mixing problems and variances 

got stuck in values near to zero. Also, in binary data models, expansion improves chain maixing 

(which equivalently could be obtained by rescaling problematic parameters – such as residual 

variation – and then back-scaling resulting estimates), as shown below: 

> ###code block C5 

>  

> prior.c5a <- list(R=list(V=10,fix=1),G=list(G1=list(V=1,nu=1, 

+ alpha.mu=0, alpha.v=1000))) 

> m.c5a <- MCMCglmm(sex~1,random=~dam,data=BTdata,family="categorical", 

+ prior=prior.c5a,verbose=F,nitt=25000,burnin=5000,thin=25) 

>  

> c2<-((16*sqrt(3))/(15*pi))^2 #rescaling to Vres=0 

> plot(mcmc.list(m.c4a$VCV[,1],m.c5a$VCV[,1])) 

> plot(mcmc.list(m.c4a$VCV[,1]/(1+c2*m.c4a$VCV[,"units"]), 

+ m.c5a$VCV[,1]/(1+c2*m.c5a$VCV[,"units"]))) 

>  

>  

> effectiveSize(m.c4a$VCV[,1]) 

    var1  

410.4393  
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> effectiveSize(m.c5a$VCV[,1]) 

    var1  

488.7346  

> #we might even increase effective size using different sampling method 

> m.c6a <- MCMCglmm(sex~1,random=~dam,data=BTdata,family="categorical", 

+ prior=prior.c5a,verbose=F,nitt=25000,burnin=5000,thin=25,slice=T) 

> effectiveSize(m.c6a$VCV[,1]) 

    var1  

597.7756 

 

Zero-inflated models 

In biology often we end up with data where our treatments had no effect on the subject. It’s 

especially apparent for count data, generated by Poisson processes. In such data, zeros are often 

– and sometimes too often. In MCMCglmm there’s one special class of distributions – zero-

inflated distributions, which in fact model two variables. E.g. in zero-inflated Poisson (ZIP), first 

variable models probability from a Poisson process, and second models probability (binomial) 

that zero comes from a zero-inflated process (yes or no). We have to account for this structure of 

effects in our (co)variance structure, remembering that covariance between these two processes 

cannot be estimated since they never occur together in one data point. To illustrate we will fit a 

ZIP model to data on PhD. Students publishing rates, compared to different features of their 

supervisors. 

> ###code block C6 

>  

> library(pscl) 

Loading required package: MASS 

 

Attaching package: 'MASS' 

 

The following object(s) are masked _by_ '.GlobalEnv': 

 

    mammals 

 

Loading required package: mvtnorm 

Loading required package: gam 

Loading required package: splines 

Loading required package: akima 

Classes and Methods for R developed in the 

Political Science Computational Laboratory 

Department of Political Science 

Stanford University 

Simon Jackman 

hurdle and zeroinfl functions by Achim Zeileis 

> data(bioChemists) 

> head(bioChemists) 

  art   fem     mar kid5  phd ment 

1   0   Men Married    0 2.52    7 

2   0 Women  Single    0 2.05    6 

3   0 Women  Single    0 3.75    6 
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4   0   Men Married    1 1.18    3 

5   0 Women  Single    0 3.75   26 

6   0 Women Married    2 3.59    2 

> #it seems there are lots of zeros in art 

> sum(bioChemists$art==0)/length(bioChemists$art)#more than 30% are zeros 

[1] 0.3005464 

> #end we'd expect only 18% under Poisson process 

> ppois(0,mean(bioChemists$art)) 

[1] 0.1839859 

>  

> prior.c71 <- list(R=list(V=diag(2),nu=0.002,fix=2)) 

> m.c71 <- MCMCglmm(art~trait-

1+at.level(trait,1):fem+at.level(trait,1):mar+ 

+ at.level(trait,1):kid5+at.level(trait,1):phd+at.level(trait,1):ment, 

+ rcov=~idh(trait):units,data=bioChemists,prior=prior.c71, 

+ family="zipoisson",verbose=F) 

Warning message: 

In MCMCglmm(art ~ trait - 1 + at.level(trait, 1):fem + at.level(trait,  : 

  some fixed effects are not estimable and have been removed. Use 

singular.ok=TRUE to sample these effects, but use an informative prior! 

> plot(m.c71$Sol) 

Waiting to confirm page change... 

> quantile(boot::inv.logit(m.c71$Sol[,2]/sqrt(1+c2))) 

         0%         25%         50%         75%        100%  

0.004040984 0.008367092 0.011399349 0.019700200 0.036401536  

> #or 

> quantile(plogis(m.c71$Sol[,2]/sqrt(1+c2))) 

         0%         25%         50%         75%        100%  

0.004040984 0.008367092 0.011399349 0.019700200 0.036401536  

>  

> prior.c72<-list(R=list(V=1,nu=0.002)) 

> m.c72 <- MCMCglmm(art~fem+mar+kid5+phd+ment,data=bioChemists, 

+ prior=prior.c72,family="poisson",verbose=F,saveX=T) 

> #posterior check of the need of ZIP model 

> ob.zer <- sum(bioChemists$art==0) 

> nr.zer <- 1:1000 

> for(i in 1:1000) { 

+ pred1 <- rnorm(915,(m.c72$X%*%m.c72$Sol[i,])@x,sqrt(m.c72$VCV[i])) 

+ nr.zer[i]<-sum(rpois(915,exp(pred1))==0) 

+ } 

> hist(nr.zer,breaks=20) 

> abline(v=ob.zer,lwd=2) 

 

As you can see – fitting ZIP model is simple. However, even when we think we need ZIP, 

it may be not really necessary – as seen here, based on naïve quantiles or post-fitting check 

based on predicted values. 

 Alternative for ZIP models can be found and it’s called Hurdle models. They’re very 

similar to ZIP models in that they also model two variables. However, the first one models the 

probability from zero-truncated Poisson distribution (Poisson process without zeros; in ZIP it 

was just Poisson process distribution) and the second one models binary process (yeas or not) 
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that the response is zero (in ZIP that was probability that zero comes from zero-inflation). We’ll 

fit Hurdle model analogical to the ZIP model (previous section) and see how to interpret it. As it 

will be seen – Hurdle models show much better mixing properties. 

> ###code block C7 

>  

> m.c73 <- MCMCglmm(art~trait-

1+at.level(trait,1):fem+at.level(trait,1):mar+ 

+ at.level(trait,1):kid5+at.level(trait,1):phd+at.level(trait,1):ment, 

+ rcov=~idh(trait):units,data=bioChemists,prior=prior.c71, 

+ family="hupoisson",verbose=F) 

Warning message: 

In MCMCglmm(art ~ trait - 1 + at.level(trait, 1):fem + at.level(trait,  : 

  some fixed effects are not estimable and have been removed. Use 

singular.ok=TRUE to sample these effects, but use an informative prior! 

> plot(m.c73$Sol) 

Waiting to confirm page change... 

> c2 <- (16*sqrt(3)/(15*pi))^2 

> #constant proportions of zeros across fixed effects 

> #since only intercept fitted in hurdle process 

> HPDinterval(boot::inv.logit(m.c73$Sol[,2]/sqrt(1+c2))) 

         lower     upper 

var1 0.2689855 0.3265462 

attr(,"Probability") 

[1] 0.95 

> #proportion of zeros in non-zero truncated Poisson distribution 

> HPDinterval(ppois(0,exp(m.c73$Sol[,1]+0.5*m.c73$VCV[,1]))) 

         lower     upper 

var1 0.1503793 0.3547181 

attr(,"Probability") 

[1] 0.95 

> #CIs overlap 

 

 OK, so there seems to be little support for Hurdle model as well – proportions of zeros 

generated in Hurdle model are similar to those generated by ordinary Poisson process. 

However, remember that in our model Hurdle process was crossed only with intercept, which 

means our conclusions should only for single women with no young children who obtained PhD 

from department without prestige and whose mentors published nothing in the past 3 years. 

Let’s see if the same holds for e.g. men. 

> ###code block C8 

>  

> HPDinterval(ppois(0,exp(m.c73$Sol[,1]+m.c73$Sol[,3]+ 

+ 0.5*m.c73$VCV[,1]))) 

          lower     upper 

var1 0.09651753 0.2769605 

attr(,"Probability") 

[1] 0.95 
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 This yields lower CI and suggests in case of men there may be zero-inflation. Let’s verify 

this by relaxing our model and fitting separate Hurdle processes for males and women. 

> ###code block C9 

>  

> m.c74 <- MCMCglmm(art~trait-

1+at.level(trait,1:2):fem+at.level(trait,1):mar+ 

+ at.level(trait,1):kid5+at.level(trait,1):phd+at.level(trait,1):ment, 

+ rcov=~idh(trait):units,data=bioChemists,prior=prior.c71, 

+ family="hupoisson",verbose=F) 

Warning message: 

In MCMCglmm(art ~ trait - 1 + at.level(trait, 1:2):fem + at.level(trait,  : 

  some fixed effects are not estimable and have been removed. Use 

singular.ok=TRUE to sample these effects, but use an informative prior! 

> HPDinterval(boot::inv.logit((m.c74$Sol[,2]+m.c74$Sol[,4])/sqrt(1+c2))) 

         lower     upper 

var1 0.2327803 0.3107261 

attr(,"Probability") 

[1] 0.95 

> #expected zeros from Hurdle proces shrunk 

> HPDinterval(ppois(0,exp(m.c74$Sol[,1]+m.c74$Sol[,3]+0.5*m.c74$VCV[,1]))) 

         lower     upper 

var1 0.0768166 0.2500347 

attr(,"Probability") 

[1] 0.95 

> #but in males still there seem to be zero-deflation 

 

 Still, zero-inflation in men is detectable. This highlights one serious drawback of Hurdle 

models – if we want to model zero-inflation adequately, we have to build complex models with 

as many Hurdle-related probabilities as we have fixed effects. In ZIP models it’s simpler, but in 

the absence of zero-inflation we risk computational problems. 

Zero-altered models 

Do we really need another zero-something? Zero-altered models are similar to Hurdle models, 

but instead of using logit link we use log-log link. Such formulation allows for fitting both zero-

inflation and zero-deflation in the Poisson process. Formulation of such model should follow two 

simple rules: we interact residual variance with the trait effect, equalizing overdispersion in 

both Poisson and zero-altering processes, and we contrast (interact) two processes with fixed 

effects yielding two sets of parameters: original coefficients for Poisson process and second set 

of coefficients for zero-altering process (if they’re zero – there’s no zero-altering; if they’re 

negative – we detect zero-inflation, when they’re positive – there’s zero-deflation). 

> ###code block C10 

>  

> m.c8 <- MCMCglmm(art~trait*(fem+mar+kid5+phd+ment), 

+ rcov=~trait:units, data=bioChemists, 

+ family="zapoisson", verbose=F) 

> summary(m.c8) 
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 Iterations = 12991 

 Thinning interval  = 3001 

 Sample size  = 1000  

 

 DIC: 3040.3  

 

 R-structure:  ~trait:units 

 

            post.mean l-95% CI u-95% CI eff.samp 

trait:units    0.3619   0.2652   0.4803     49.6 

 

 Location effects: art ~ trait * (fem + mar + kid5 + phd + ment)  

 

                       post.mean l-95% CI u-95% CI eff.samp 

(Intercept)              0.35604  0.03343  0.73650    201.8 

traitza_art             -0.55981 -1.17703 -0.07475    184.7 

femWomen                -0.20474 -0.36742 -0.04315    309.4 

marMarried               0.08079 -0.10376  0.25805    299.2 

kid5                    -0.12991 -0.24227 -0.01249    287.2 

phd                      0.01300 -0.06669  0.10893    265.2 

ment                     0.01938  0.01295  0.02710    360.5 

traitza_art:femWomen     0.02373 -0.28562  0.27828    193.3 

traitza_art:marMarried   0.16840 -0.12911  0.48070    241.9 

traitza_art:kid5        -0.08838 -0.31326  0.09718    169.4 

traitza_art:phd          0.01530 -0.12286  0.15102    207.2 

traitza_art:ment         0.02851  0.01372  0.04408    112.4 

                        pMCMC     

(Intercept)             0.058 .   

traitza_art             0.044 *   

femWomen                0.022 *   

marMarried              0.392     

kid5                    0.022 *   

phd                     0.802     

ment                   <0.001 *** 

traitza_art:femWomen    0.870     

traitza_art:marMarried  0.272     

traitza_art:kid5        0.386     

traitza_art:phd         0.804     

traitza_art:ment       <0.001 *** 

--- 

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 

  

 Interpretation is simple – the more papers our mentor produces, the greater zero-

deflation (listen to that! ;). 

Analysing survival data in R 

Survival data are difficult – both to fit and interpret. Main difficulty is that variance in such data 

increases in a non-linear way with the mean, following exponential function (errors are gamma-

distributed). Data of such form are most often measurements of time to death or time to some 
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kind of failure. They pose a special problem and thus we treat them separately. Efficient tools 

exist in R for dealing with such data and thus we’ll leave MCMCglmm for a while. 

 We’ll use sample data on lung cancer survival. Before fitting data has to be prepared. 

They should be in general of form “start time”, “stop time”, “status” or “time to event”, “status”, 

where status is 0 when the event (e.g. death) didn’t occur and 1 when it did occur. Data subjects 

with 0 are called right-censored because we don’t have information on the occurrence of the 

event, we only know it will probably happen in the future (e.g. subject will eventually die). 

> ###code block C11 

>  

> install.packages("survival");library(survival) 

> data(lung) 

> head(lung) 

  inst time status age sex ph.ecog ph.karno pat.karno 

1    3  306      2  74   1       1       90       100 

2    3  455      2  68   1       0       90        90 

3    3 1010      1  56   1       0       90        90 

4    5  210      2  57   1       1       90        60 

5    1  883      2  60   1       0      100        90 

6   12 1022      1  74   1       1       50        80 

  meal.cal wt.loss 

1     1175      NA 

2     1225      15 

3       NA      15 

4     1150      11 

5       NA       0 

6      513       0 

> ?lung 

 

 Analysing the data may include plotting overall survival patterns and comparing specific 

groups with respect to survival. 

> ###code block C12 

>  

> surlun <- with(na.omit(lung), Surv(time,status)) 

> m.c91 <- survfit(surlun~1,data=na.omit(lung)) 

> plot(m.c91,yscale=100) #general distribution of survival 

>  

> m.c92 <- survfit(surlun~sex,data=na.omit(lung)) 

> plot(m.c92,yscale=100,col=c("red","blue")) #sex-specific survival 

distribution 

> #and test therefor 

> survdiff(surlun~sex,data=na.omit(lung)) 

Call: 

survdiff(formula = surlun ~ sex, data = na.omit(lung)) 

 

        N Observed Expected (O-E)^2/E (O-E)^2/V 

sex=1 103       82     68.7      2.57      6.05 

sex=2  64       38     51.3      3.44      6.05 
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 Chisq= 6  on 1 degrees of freedom, p= 0.0139 

 

Finally, if our data are associated with some continuous predictors, we can see if any of these 

predictors predict the probability of survival. In such case, coxph() function is used. 

> ###code block C13 

>  

>  

> m.c93 <- 

coxph(surlun~age+ph.ecog+ph.karno+pat.karno,data=na.omit(lung),x=T) 

> m.c93 

Call: 

coxph(formula = surlun ~ age + ph.ecog + ph.karno + pat.karno,  

    data = na.omit(lung), x = T) 

 

 

              coef exp(coef) se(coef)     z      p 

age        0.01269      1.01  0.01146  1.11 0.2700 

ph.ecog    0.59875      1.82  0.22163  2.70 0.0069 

ph.karno   0.02077      1.02  0.01168  1.78 0.0750 

pat.karno -0.00965      0.99  0.00766 -1.26 0.2100 

 

Likelihood ratio test=17.6  on 4 df, p=0.00146  n= 167  

> cox.zph(m.c93)#testing for assumptions of survival analysis 

             rho  chisq     p 

age       0.0721 0.7102 0.399 

ph.ecog   0.0110 0.0143 0.905 

ph.karno  0.1537 2.2380 0.135 

pat.karno 0.0634 0.5280 0.467 

GLOBAL        NA 7.1518 0.128 

 

 Try analysing data on rats that have been injected with carcinogen and then subjected to 

experimental treatment (administered with either placebo or drug). 

> ###code block C14 

>  

> data(rats) 

> summary(rats) 

     litter           rx              time        

 Min.   : 1.0   Min.   :0.0000   Min.   : 34.00   

 1st Qu.:13.0   1st Qu.:0.0000   1st Qu.: 78.25   

 Median :25.5   Median :0.0000   Median : 94.50   

 Mean   :25.5   Mean   :0.3333   Mean   : 89.43   

 3rd Qu.:38.0   3rd Qu.:1.0000   3rd Qu.:104.00   

 Max.   :50.0   Max.   :1.0000   Max.   :104.00   

     status       

 Min.   :0.0000   

 1st Qu.:0.0000   

 Median :0.0000   

 Mean   :0.2667   
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 3rd Qu.:1.0000   

 Max.   :1.0000   

> ratss <- with(rats,Surv(time,status)) 

> m.c94 <- survfit(ratss~rx,data=rats) 

> plot(m.c94,yscale=100,col=c("green","red")) 
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Part 4 

Overview 

1. Presentation – multivariate methods, their logic, dangers and indications of use. 

2. DIY – simple ordination 

a. Principal component analysis in R 

b. Factor analysis in R 

c. Multidimensional scaling 

3. DIY – clustering methods 

a. Clustering methods in R – agglomerating methods 

b. Hierarchical methods 

4. DIY – multiple dependent and independent variables 

a. Canonical correlation in R 

5. Discriminant function analysis 

6. Visualizing multivariate data 

7. DIY (if time permits) – introduction to tree-regression and its use in multivariate 

problems. 

Principal component analysis  

Briefly, when you have to much (presumably correlated) predictors you will probably start with 

PCA. It allows transforming your data into a series of linear combinations based on eigenvalue 

calculations. These combinations called components are formed in such a way that the first one 

explains the majority of variance, and the next ones explain decreasing proportions of variance 

from original data. Of course, when predictors are entirely uncorrelated decomposition will be 

meaningless and PCA doesn’t make any sense. 

 Here and throughout this part we will use datasets provided by Crawley (2010) and 

Manly (2005). Our first example is from Bumpus (1898) and describes survival rates of 

sparrows that were injured during storm. Bumpus took these birds, observed their survival and 

recorded several body measurements to see if they relate to survival in any way. In this he saw 

opportunity to test Darwin’s theory of natural selection. 

> ###code block D1 

>  

> sparr<-read.table("sparr.txt",sep="\t",head=T) 

> sparr<-sparr[,-c(8:10)]#check if last columnsare improper 

> sparrpca<-sparr[,2:6] 

> sparrpca<-na.omit(sparrpca) 

> for(i in 1:5){ 

+ sparrpca[,i]<-(sparrpca[,i]-mean(sparrpca[,i]))/sqrt(var(sparrpca[,i])) 

+ } 

>  

> m.d1 <- prcomp(sparrpca) 
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> summary(m.d1)#check variance partitioning 

Importance of components: 

                         PC1   PC2    PC3    PC4    PC5 

Standard deviation     1.902 0.729 0.6216 0.5491 0.4056 

Proportion of Variance 0.723 0.106 0.0773 0.0603 0.0329 

Cumulative Proportion  0.723 0.830 0.9068 0.9671 1.0000 

> m.d1$rotation#see eigenvectors 

                PC1         PC2        PC3         PC4 

totLen    0.4517989 -0.05072137  0.6904702 -0.42041399 

alarExt   0.4616809  0.29956355  0.3405484  0.54786307 

beakHead  0.4505416  0.32457242 -0.4544927 -0.60629605 

lenHume   0.4707389  0.18468403 -0.4109350  0.38827811 

keelStern 0.3976754 -0.87648935 -0.1784558  0.06887199 

                 PC5 

totLen     0.3739091 

alarExt   -0.5300805 

beakHead  -0.3427923 

lenHume    0.6516665 

keelStern -0.1924341 

> #it seems that pc1 describes the size of a bird and  

> #pc2 describes its shape (is contrasts 2 groups of variables) 

> plot(m.d1)#or do it here 

> biplot(m.d1) 

> abline(h=0,lty=2) 

> abline(v=0,lty=2) 

>  

> as.matrix(sparrpca)%*%as.matrix(m.d1$rotation[,1,drop=F]) 

           PC1 

1   0.06428901 

2  -2.18031283 

3  -1.14556567 

4  -2.31106565 

5  -0.29504203 

6   1.91626198 

7  -1.05036763 

8   0.43854156 

9   2.69147373 

10  0.18568959 

11  0.37111481 

12  0.26770575 

13  2.35924685 

14  0.71464741 

15 -1.39425236 

16 -1.55867849 

17  0.54832983 

18 -1.65771758 

19 -1.77666826 

20  2.17605614 

21 -0.45737249 

22 -0.96511115 

23 -0.65805539 

24  1.58405400 
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25 -3.71680462 

26  2.12356038 

27 -1.32885487 

28  1.72330431 

29  3.99433726 

30 -3.71422633 

31  0.14837847 

32  1.19507659 

33  1.02993746 

34 -0.71482109 

35 -0.31746568 

36  2.79633717 

37 -4.24025643 

38 -0.54188759 

39 -1.90570270 

40  4.07138353 

41  0.06283901 

42 -0.93831834 

43 -0.42284580 

44  1.58678784 

45 -2.50895504 

46  1.61879121 

47 -1.55900792 

48  1.55698964 

49  2.13422241 

> pcas <- data.frame("id"=1:length(sparrpca[,1])) 

> for (i in 1:5) { 

+ a<-as.matrix(sparrpca) %*% as.matrix(m.d1$rotation[,i,drop=F]) 

+ pcas<-cbind(pcas,a) 

+ } 

> pcas<-cbind(pcas,sparr$surv[1:49]) 

> names(pcas)[7]<-"surv" 

> plot(PC2~PC1,data=subset(pcas,surv==2),pch=20,col="red") 

> points(PC2~PC1,data=subset(pcas,surv==1)) 

> abline(v=0,lty=2) 

> abline(h=0,lty=2) 

> t.test(pcas$PC1~pcas$surv) 

 

        Welch Two Sample t-test 

 

data:  pcas$PC1 by pcas$surv  

t = -0.3315, df = 46.754, p-value = 0.7418 

alternative hypothesis: true difference in means is not equal to 0  

95 percent confidence interval: 

 -1.2335820  0.8846343  

sample estimates: 

mean in group 1 mean in group 2  

    -0.09969935      0.07477451  

 

> var.test(pcas$PC1~pcas$surv) 

 

        F test to compare two variances 
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data:  pcas$PC1 by pcas$surv  

F = 0.4788, num df = 20, denom df = 27, p-value = 

0.09353 

alternative hypothesis: true ratio of variances is not equal to 1  

95 percent confidence interval: 

 0.2124834 1.1371463  

sample estimates: 

ratio of variances  

         0.4787834  

 

> if(!require("Rcmdr")) install.packages("Rcmdr");require("Rcmdr") 

Loading required package: Rcmdr 

Loading required package: tcltk 

Loading Tcl/Tk interface ... done 

Loading required package: car 

Loading required package: nnet 

 

Rcmdr Version 1.6-0 

 

 

Attaching package: 'Rcmdr' 

 

The following object(s) are masked from 'package:tcltk': 

 

    tclvalue 

 

> leveneTest(pcas$PC1~as.factor(pcas$surv),data=pcas,center=median) 

Levene's Test for Homogeneity of Variance (center = median) 

      Df F value Pr(>F)   

group  1  2.8692 0.0969 . 

      47                  

--- 

Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1  

> #it seems that survivors are more average 

> #nonsurvivors are more variable nad extreme 

 

 What we get is apparent simplification of our predictors into just two: size and shape 

related. It makes the whole analysis easier and more intuitive. This is especially important in 

case of sociological and cultural data where often datasets are huge and comprise dozens of 

variables. Let’s analyse such complex example. These data show percentages of employment in 

different branches of economy for 30 countries. The question is – could we describe these 

countries using fewer variables and thus reducing dimensionality of the problem? 

> ###code block D2 

>  

> employ <- read.table("employ.txt",head=T,sep="\t") 

> summary(employ) 

              Country       Group         AGR        

 Albania          : 1   Eastern: 8   Min.   : 0.00   

 Austria          : 1   EFTA   : 6   1st Qu.: 4.40   
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 Belgium          : 1   EU     :12   Median : 8.45   

 Bulgaria         : 1   Other  : 4   Mean   :12.19   

 Cyprus           : 1                3rd Qu.:14.93   

 Czech/Slovak Reps: 1                Max.   :55.50   

 (Other)          :24                                

      MIN              MAN              PS        

 Min.   : 0.000   Min.   : 0.00   Min.   :0.000   

 1st Qu.: 0.125   1st Qu.:19.00   1st Qu.:0.275   

 Median : 0.500   Median :20.30   Median :0.800   

 Mean   : 3.447   Mean   :20.29   Mean   :0.800   

 3rd Qu.: 1.050   3rd Qu.:24.55   3rd Qu.:1.175   

 Max.   :37.300   Max.   :38.70   Max.   :2.200   

                                                  

      CON             SER             FIN         

 Min.   : 0.60   Min.   : 3.30   Min.   : 0.000   

 1st Qu.: 6.40   1st Qu.:12.62   1st Qu.: 3.300   

 Median : 7.05   Median :16.80   Median : 7.150   

 Mean   : 7.53   Mean   :15.64   Mean   : 6.650   

 3rd Qu.: 9.10   3rd Qu.:19.62   3rd Qu.: 9.325   

 Max.   :16.90   Max.   :24.50   Max.   :15.300   

                                                  

      SPS              TC              X          

 Min.   : 0.00   Min.   :3.000   Min.   : 99.80   

 1st Qu.:22.95   1st Qu.:5.800   1st Qu.: 99.90   

 Median :27.00   Median :6.750   Median :100.00   

 Mean   :26.99   Mean   :6.453   Mean   : 99.98   

 3rd Qu.:33.17   3rd Qu.:7.150   3rd Qu.:100.00   

 Max.   :41.60   Max.   :8.800   Max.   :100.10   

                                                  

   X.1            X.2               X.3       

 Mode:logical   Mode:logical   Min.   :1989   

 NA's:30        NA's:30        1st Qu.:1990   

                               Median :1991   

                               Mean   :1991   

                               3rd Qu.:1992   

                               Max.   :1995   

                                              

> employ<-employ[,-c(13:15)] 

> emppca <- employ[,3:11] 

> for(i in 1:length(names(emppca))){ 

+ emppca[,i]<-(emppca[,i]-mean(emppca[,i]))/sqrt(var(emppca[,i])) 

+ } 

>  

> rownames(emppca)<-employ[,1] 

> m.d2<-prcomp(emppca) 

> plot(m.d2) 

> biplot(m.d2,cex=0.5) 

> abline(v=0,lty=2) 

> abline(h=0,lty=2) 

>  

> summary(m.d2) 

Importance of components: 
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                         PC1   PC2   PC3   PC4    PC5 

Standard deviation     1.764 1.345 1.223 1.031 0.8428 

Proportion of Variance 0.346 0.201 0.166 0.118 0.0789 

Cumulative Proportion  0.346 0.547 0.713 0.831 0.9102 

                          PC6    PC7    PC8     PC9 

Standard deviation     0.5580 0.5417 0.4515 0.00266 

Proportion of Variance 0.0346 0.0326 0.0226 0.00000 

Cumulative Proportion  0.9447 0.9774 1.0000 1.00000 

> m.d2$rotation 

           PC1          PC2         PC3         PC4 

AGR  0.5114918  0.023474999  0.27859140 -0.01649218 

MIN  0.3749833 -0.000490734 -0.51505210 -0.11360623 

MAN -0.2461613 -0.431752051  0.50205622 -0.05827010 

PS  -0.3161203 -0.109144430  0.29369499 -0.02324549 

CON -0.2215986  0.242470912 -0.07153072 -0.78266601 

SER -0.3815359  0.408255893 -0.06514938 -0.16903778 

FIN -0.1310884  0.552938958  0.09565440  0.48921763 

SPS -0.4281618 -0.054705874 -0.36015928  0.31724250 

TC  -0.2050706 -0.516649883 -0.41299565  0.04206329 

            PC5         PC6         PC7         PC8 

AGR  0.02403794 -0.04239691 -0.16357428 -0.54040909 

MIN -0.34631272  0.19857439  0.21259036  0.44859201 

MAN  0.23362179 -0.03091715  0.23601541  0.43175735 

PS  -0.85444839  0.20647051 -0.06056504 -0.15512240 

CON -0.06215096 -0.50263565 -0.02028469 -0.03082345 

SER  0.26667324  0.67269361  0.17483893 -0.20175280 

FIN -0.13128795 -0.40593492  0.45764510  0.02726352 

SPS  0.04571821 -0.15845276 -0.62133030  0.04147562 

TC   0.02290077 -0.14189804  0.49214521 -0.50212355 

           PC9 

AGR 0.58203611 

MIN 0.41881803 

MAN 0.44708636 

PS  0.03025124 

CON 0.12865575 

SER 0.24502068 

FIN 0.19075812 

SPS 0.41031481 

TC  0.06074315 

>  

> #it seems that here more pcs are meaningfull 

> #pc1 basically contrasts agriculture and mining with 

> #the remining branches whereas pc2 is positively 

> #influenced by finances and services and negatively 

> #by manufacturing and transportation 

>  

> if(!require("FactoMineR")) 

install.packages("FactoMineR");require("FactoMineR") 

Loading required package: FactoMineR 

Loading required package: ellipse 

 

Attaching package: 'ellipse' 
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The following object(s) are masked from 'package:car': 

 

    ellipse 

 

Loading required package: cluster 

Loading required package: scatterplot3d 

> #tryFactoMineR 

> #FactoMineR(emppca) 

> m.d3<-PCA(emppca) 

 

 This is but the foretaste of more sophisticated multivariate statistics, but as seen here, 

simple PCA analysis can cluster countries based on some sociological and economic measures. 

To practise – try analysing data called “protein” depicting the patterns of protein acquisition in 

different countries with regard to different food types. 

Factor analysis 

Factor analysis is complementary to PCA. However, whereas PCA returns as many variables as 

there were predictors and puts most of data variance into several first PCs, factor analysis 

estimates some (most often small) number of factors that (as we hope) summarise our data with 

respect to some abstract, unmeasured variables. E.g. based on several geographical and 

geological measures, plus some plant-distribution variables, we could develop several factors 

allowing for easy quantification of the character of the community (e.g. its “grassiness”, “it’s 

tendency to being wet”, “it’s xerothermic-like character” etc.). There’s one difficulty in factor 

analysis – we have to arbitrarily choose the number of factors to estimate. Thus, often people 

decide to begin factor building with few first PCs from simple PCA. Alternatively we may just 

decide and see what happens. Factor analysis is more exploratory and subjective, but carefully 

done and interpreted may be really useful. Either PCA-based or non-PCA-based methods are 

often defaults in statistical software. 

 Here we’ll build on data both from biology and sociology. First analysis should explain 

everything. 

> ###code block D3 

>  

>  

> m.d4<-factanal(employ[,3:11],4,rotation="varimax") 

> print(m.d4,digits=2,sort=T) 

 

Call: 

factanal(x = employ[, 3:11], factors = 4, rotation = "varimax") 

 

Uniquenesses: 

 AGR  MIN  MAN   PS  CON  SER  FIN  SPS   TC  

0.00 0.00 0.00 0.74 0.60 0.17 0.51 0.00 0.47  

 

Loadings: 

    Factor1 Factor2 Factor3 Factor4 
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AGR -0.81   -0.25   -0.53           

SPS  0.95                    0.29   

TC   0.61           -0.10   -0.37   

MIN         -0.87           -0.47   

MAN          0.94           -0.31   

CON                  0.63           

SER  0.22    0.15    0.78    0.38   

FIN                  0.43    0.55   

PS   0.20    0.41    0.21           

 

               Factor1 Factor2 Factor3 Factor4 

SS loadings       2.03    1.92    1.55    0.99 

Proportion Var    0.23    0.21    0.17    0.11 

Cumulative Var    0.23    0.44    0.61    0.72 

 

Test of the hypothesis that 4 factors are sufficient. 

The chi square statistic is 181.1 on 6 degrees of freedom. 

The p-value is 1.98e-36  

> #loadings help us to assign meaning to factors 

> #factor 1: agriculture and other rural rather than services 

> #factor 2: lack of finance 

> #factor 3: mining rather than manufacturing 

> #factor 4: construction and service 

>  

> load<-m.d4$loadings 

> XG<-as.matrix(employ[,3:11])%*%as.matrix(load) 

> #to get factor scores for data ponits 

> #we have to solve: F*=X%*%G%*%solve(t(G)%*%G) 

> GG<-solve(t(as.matrix(load))%*%as.matrix(load)) 

> XG%*%GG 

         Factor1     Factor2     Factor3     Factor4 

 [1,]  18.527338   7.1476858  -1.5117551  11.8167832 

 [2,]  17.485692   7.0058911  -3.5327028  12.6937944 

 [3,]  15.235347   7.0760577  -0.2809193  11.4530867 

 [4,]  11.694210   9.8441156   4.3784289   5.5575214 

 [5,]   2.533935   8.1776177  -0.8339880   7.9391785 

 [6,]   7.893162   7.7079987   0.2500979   9.6644631 

 [7,]  10.173907   8.3226035   4.0960946   5.9972304 

 [8,]  13.177124   7.1642395   5.5754666   7.7943653 

 [9,]  19.905801   6.1136986  -5.3318075  17.2510259 

[10,]   6.971428   9.9356712   3.0908998   6.1196875 

[11,]   9.158649   8.3201096   3.5580757   6.6667216 

[12,]  12.903817   7.8124382   4.8032089   8.6478574 

[13,]   7.506946  11.9125545   5.0777618   2.3297695 

[14,]  15.003910   6.7854931  -3.0130551  11.7617878 

[15,]  12.150673   6.7632404  -0.8861064  10.4053888 

[16,]  19.179363   3.4120072  -2.5791257  13.9305401 

[17,]  20.402234   5.8200999  -4.1117375  14.0347627 

[18,]   7.774464  10.3733198   6.9319765   4.8052685 

[19,] -16.599403  -9.8522857  -8.8928128  11.5968394 

[20,]   2.970290  16.8623595  -4.5397876  -0.8424827 

[21,]  11.242079 -20.3652527   7.5463535 -11.3615473 
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[22,]  13.770822 -16.6189733   2.4668140  -3.7616371 

[23,]   4.535917   9.0542604  -6.6319136   5.1902652 

[24,]  -1.511447  18.2113839  -3.9804436  -5.8138159 

[25,]   6.576236  13.0223493  -5.2595669   1.7702921 

[26,]   5.218100  18.1353546   5.6429925  -9.0575058 

[27,]   4.924561   7.7653555   5.9706257   6.6221596 

[28,]  16.349561  -0.1049708  10.8686056  13.3402483 

[29,]  21.466433  10.8095610  -7.7651874   8.7648192 

[30,]  -7.070818   6.7196373 -11.0696070  13.7138604 

> #now it seems ovious that e.g. Turkey and Albania 

> #are dominated by rural branches of economy 

> #and Bulgaria, Hungary and former USSR have few 

> #employed in finance 

 

 As you can see factor analysis is quite straightforward. The only glitch we might  want to 

see is this arbitrary choice of the number of factors we want to have. However, based on the 

correlation matrix for analysed predictors and its eigenvalues, it’s possible to get some vague 

indication of how many factors to develop. 

> ###code block D4 

>  

> if(!require("nFactors")) install.packages("nFactors");  

>  

> ev <-eigen(cor(employ[,3:11])) 

> ap <- parallel(subject=nrow(employ[,3:11]), 

+ var=ncol(employ[,3:11]), 

+ rep=100, cent=.05) 

> nS <- nScree(ev$values, ap$eigen$qevpea) 

> plotnScree(nS) 

>  

> #classical interpretation is to use as many factors 

> #as there are eigenvalues greater than one 

 

 We can analyse much more complex data from Crawley (2005), provided in Crawley 

(2010). These are data on 54 plant species abundance, plus some environmental variables, 

gathered on nearly 100 plots. Factor analysis generating 8 factors yields interesting insights. 

Two-letter shortcuts are not helpful, maybe even plant names would not be. However, going 

through the list: factor 1 has large +loadings AE, AP, AS, and large – for AC, AO, FR: thus it 

represents continuum between tall neutral grassland and short acidic grassland. Factor 2 has 

positive loadings from high pH low plants, whereas negative from acidic low-growing plants. 

Factor 3 captures high positive correlations with legume (N-fixing) plants. 

> ###code block D5 

>  

> plspec <- read.table("pgfull.txt", head=T, sep="\t") 

> spec <- plspec[,1:54] 

> m.d5 <- factanal(spec,8,rotation="varimax") 

> m.d5 

 



Szymon Drobniak – Advanced approaches to linear modeling and multivariate statistics in R  

Uppsala, 18-21.01.2010 

99 

 

Call: 

factanal(x = spec, factors = 8, rotation = "varimax") 

 

Uniquenesses: 

   AC    AE    AM    AO    AP    AR    AS    AU    BH    BM    CC    CF  

0.638 0.086 0.641 0.796 0.197 0.938 0.374 0.005 0.852 0.266 0.056 0.574  

   CM    CN    CX    CY    DC    DG    ER    FM    FP    FR    GV    HI  

0.786 0.579 0.549 0.733 0.837 0.408 0.072 0.956 0.371 0.815 0.971 0.827  

   HL    HP    HS    HR    KA    LA    LC    LH    LM    LO    LP    OR  

0.921 0.218 0.332 0.915 0.319 0.305 0.349 0.333 0.927 0.121 0.403 0.005  

   PL    PP    PS    PT    QR    RA    RB    RC    SG    SM    SO    TF  

0.286 0.606 0.336 0.401 0.913 0.491 0.005 0.754 0.341 0.212 0.825 0.428  

   TG    TO    TP    TR    VC    VK  

0.476 0.469 0.309 0.611 0.651 0.170  

 

Loadings: 

   Factor1 Factor2 Factor3 Factor4 Factor5 Factor6 Factor7 Factor8 

AC -0.512  -0.268                           0.121                  

AE  0.925  -0.107          -0.146          -0.118                  

AM -0.206   0.413   0.213           0.163   0.115   0.153   0.186  

AO -0.312  -0.196  -0.151  -0.105          -0.148  -0.102          

AP  0.827  -0.173  -0.195  -0.167          -0.123                  

AR          0.150           0.111                   0.127          

AS  0.778                                                          

AU                                                          0.996  

BH  0.380                                                          

BM -0.116   0.292           0.695                   0.380          

CC -0.152                   0.159           0.943                  

CF          0.539                   0.342                          

CM                  0.434  -0.110                                  

CN -0.276   0.143                           0.541   0.147          

CX                          0.628           0.169   0.146          

CY -0.211          -0.162   0.340                   0.270          

DC         -0.125                           0.372                  

DG  0.738                  -0.127           0.145                  

ER                                  0.960                          

FM -0.108                                   0.133                  

FP  0.245   0.226           0.478   0.493          -0.176          

FR -0.386          -0.144                                          

GV -0.134                                                          

HI -0.202  -0.129  -0.163   0.182                   0.216          

HL         -0.157          -0.127          -0.139                  

HP -0.155   0.832                                   0.240          

HS  0.746  -0.102   0.257  -0.152                                  

HR -0.155  -0.107  -0.122   0.101                   0.150          

KA -0.167   0.774  -0.169   0.139                                  

LA                                          0.829                  

LC -0.306   0.378  -0.125   0.529                           0.328  

LH -0.256   0.556  -0.132   0.421           0.223   0.195          

LM                                  0.112   0.221                  

LO -0.129   0.432           0.781                   0.251          

LP  0.115           0.745                                          
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OR                                                          0.996  

PL          0.369   0.675           0.337                          

PP  0.527           0.226  -0.167          -0.175                  

PS -0.212   0.301  -0.130   0.681           0.150   0.158          

PT  0.741                  -0.100   0.150  -0.105                  

QR -0.194  -0.135                                                  

RA  0.195   0.227   0.578           0.205  -0.166  -0.107          

RB -0.122   0.158           0.272                   0.934          

RC  0.361                  -0.198          -0.176  -0.152          

SG                                  0.806                          

SM          0.388                                   0.787          

SO                 -0.100   0.386                                  

TF          0.702   0.260                                          

TG  0.141           0.583  -0.110           0.367   0.107          

TO  0.418           0.567  -0.158                                  

TP                  0.818                                          

TR          0.141   0.306   0.238                   0.458          

VC          0.403   0.246   0.309          -0.169                  

VK                                  0.909                          

 

               Factor1 Factor2 Factor3 Factor4 Factor5 Factor6 Factor7 

SS loadings      5.840   3.991   3.577   3.540   3.028   2.644   2.427 

Proportion Var   0.108   0.074   0.066   0.066   0.056   0.049   0.045 

Cumulative Var   0.108   0.182   0.248   0.314   0.370   0.419   0.464 

               Factor8 

SS loadings      2.198 

Proportion Var   0.041 

Cumulative Var   0.505 

 

Test of the hypothesis that 8 factors are sufficient. 

The chi square statistic is 1675.57 on 1027 degrees of freedom. 

The p-value is 5.92e-34 

 

Multidimensional scaling 

This one of my favourites. Quite often we end up with data on several subjects in the form of 

distance matrix, i.e. each cell of such matrix describes the distance between these two 

subjects/units on some scale. It may be geographical distance, but also e.g. difference in thinking 

measured by disagreements in questionnaire responses, of resemblance of plant-species 

composition. The key is that based on this distances and special recursive optimising algorithm 

we may estimate relative relationships of these 3 variables in some n-dimensional space (best if 

it’s 2-D or, at worst, 3-D space – which both are easy to interpret and imagine). 

 As our first example we’ll consider road distances on New Zealand’s South Island. We’ll 

see if scaling is able to disentangle actual geometric pattern of distribution in two-dimensional 

geographical space. 

> ###code block D6 

>  

> nzsi <- read.table("nzsi.txt",head=T,sep="\t") 
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> nzsi<-nzsi[,-c(14:19)] 

> nzsi<-nzsi[-c(14:19),] 

> for(i in 1:length(names(nzsi))){ 

+ nzsi[,i]<-(nzsi[,i]-mean(nzsi[,i]))/sqrt(var(nzsi[,i])) 

+ } 

> m.d6 <- cmdscale(nzsi,eig=T,k=2) 

> xv<-m.d6$points[,1] 

> yv<-m.d6$points[,2] 

> plot(xv,yv,type="n") 

> text(xv,yv,labels=colnames(nzsi),cex=.7) 

> #those who visited new zealand should see that 

> #similarity of this pattern to actual map of SI 

> #is striking 

 

 Another interesting example regards voting behaviour of American congressman in a 

public debate about environmental change. Here distances are numbers of questions two 

congressmen differed in their answers. Can multidimensional scaling find any pattern here? 

> ###code block D7 

>  

> congress <- read.table("congress.txt",head=T,sep="\t") 

> m.d7<-cmdscale(congress,eig=T,k=2) 

> xv<-m.d7$points[,1] 

> yv<-m.d7$points[,2] 

> plot(xv,yv,type="n") 

> text(xv,yv,labels=colnames(congress),cex=.7) 

> abline(h=0,v=0,lty=2) 

> #its apparent that our analysis manged to separate two political 

> #fractions almost perfectly 

> #interpreting second domension is tougher but it relates  

> #to the number of absentions from voting - none for Maraziti 

> #and almost half of votings for Sandman 

 

 In general multidimensional scaling should be used in situations when we want to depict 

some abstract distances geometrically. The more realistic and interpretable these geometric 

distances are the better. Ensuring this we avoid stepping into abstract interpretations. 

Cluster analysis 

Cluster analysis is mostly thought of as the mean to obtaining phylogenetic trees, which basically 

is true. Phylogenetic trees are one of possible outcomes of cluster analysis. But cluster analysis 

has much more general applications. As we’ve seen before, grouping of similar objects can be 

obtained using PCA – on the plane of first two PCs often we can see conspicuous grouping of 

objects. Here we’ll use grouping methods more explicitly. We’ll exploit one earlier data-set: on 

employment in European countries, and additional one, on phylogeny of canine species based on 

mandible measurements. 

> ###code block D8 

>  
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> #before clusteirng remove any NAs and standardize your data 

>  

> employ <- read.table("employ.txt",head=T,sep="\t") 

> summary(employ) 

              Country       Group         AGR             MIN         

 Albania          : 1   Eastern: 8   Min.   : 0.00   Min.   : 0.000   

 Austria          : 1   EFTA   : 6   1st Qu.: 4.40   1st Qu.: 0.125   

 Belgium          : 1   EU     :12   Median : 8.45   Median : 0.500   

 Bulgaria         : 1   Other  : 4   Mean   :12.19   Mean   : 3.447   

 Cyprus           : 1                3rd Qu.:14.93   3rd Qu.: 1.050   

 Czech/Slovak Reps: 1                Max.   :55.50   Max.   :37.300   

 (Other)          :24                                                 

      MAN              PS             CON             SER        

 Min.   : 0.00   Min.   :0.000   Min.   : 0.60   Min.   : 3.30   

 1st Qu.:19.00   1st Qu.:0.275   1st Qu.: 6.40   1st Qu.:12.62   

 Median :20.30   Median :0.800   Median : 7.05   Median :16.80   

 Mean   :20.29   Mean   :0.800   Mean   : 7.53   Mean   :15.64   

 3rd Qu.:24.55   3rd Qu.:1.175   3rd Qu.: 9.10   3rd Qu.:19.62   

 Max.   :38.70   Max.   :2.200   Max.   :16.90   Max.   :24.50   

                                                                 

      FIN              SPS              TC              X          

 Min.   : 0.000   Min.   : 0.00   Min.   :3.000   Min.   : 99.80   

 1st Qu.: 3.300   1st Qu.:22.95   1st Qu.:5.800   1st Qu.: 99.90   

 Median : 7.150   Median :27.00   Median :6.750   Median :100.00   

 Mean   : 6.650   Mean   :26.99   Mean   :6.453   Mean   : 99.98   

 3rd Qu.: 9.325   3rd Qu.:33.17   3rd Qu.:7.150   3rd Qu.:100.00   

 Max.   :15.300   Max.   :41.60   Max.   :8.800   Max.   :100.10   

                                                                   

   X.1            X.2               X.3       

 Mode:logical   Mode:logical   Min.   :1989   

 NA's:30        NA's:30        1st Qu.:1990   

                               Median :1991   

                               Mean   :1991   

                               3rd Qu.:1992   

                               Max.   :1995   

                                              

> employ<-employ[,-c(12:15)] 

> summary(employ)#no NAs 

              Country       Group         AGR             MIN         

 Albania          : 1   Eastern: 8   Min.   : 0.00   Min.   : 0.000   

 Austria          : 1   EFTA   : 6   1st Qu.: 4.40   1st Qu.: 0.125   

 Belgium          : 1   EU     :12   Median : 8.45   Median : 0.500   

 Bulgaria         : 1   Other  : 4   Mean   :12.19   Mean   : 3.447   

 Cyprus           : 1                3rd Qu.:14.93   3rd Qu.: 1.050   

 Czech/Slovak Reps: 1                Max.   :55.50   Max.   :37.300   

 (Other)          :24                                                 

      MAN              PS             CON             SER        

 Min.   : 0.00   Min.   :0.000   Min.   : 0.60   Min.   : 3.30   

 1st Qu.:19.00   1st Qu.:0.275   1st Qu.: 6.40   1st Qu.:12.62   

 Median :20.30   Median :0.800   Median : 7.05   Median :16.80   

 Mean   :20.29   Mean   :0.800   Mean   : 7.53   Mean   :15.64   

 3rd Qu.:24.55   3rd Qu.:1.175   3rd Qu.: 9.10   3rd Qu.:19.62   
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 Max.   :38.70   Max.   :2.200   Max.   :16.90   Max.   :24.50   

                                                                 

      FIN              SPS              TC        

 Min.   : 0.000   Min.   : 0.00   Min.   :3.000   

 1st Qu.: 3.300   1st Qu.:22.95   1st Qu.:5.800   

 Median : 7.150   Median :27.00   Median :6.750   

 Mean   : 6.650   Mean   :26.99   Mean   :6.453   

 3rd Qu.: 9.325   3rd Qu.:33.17   3rd Qu.:7.150   

 Max.   :15.300   Max.   :41.60   Max.   :8.800   

                                                  

> employ2<-scale(employ[,-c(1:2)]) 

>  

> #simplest clustering methods takes arbitrary nr of clusters 

> #and divides data into groups 

>  

> m.d81<-kmeans(employ2,5) 

> #if you want to see means for each predictor in each cluster 

> aggregate(employ2,by=list(m.d81$cluster),FUN=mean) 

  Group.1        AGR        MIN         MAN          PS         CON 

1       1  1.7886983 -0.1180576 -0.06203656 -0.40264110 -0.65127847 

2       2  3.5194346  1.7994379 -2.14519617 -1.28845153 -1.51111239 

3       3  0.1514056  3.3447137 -2.14519617 -1.28845153 -0.04756528 

4       4 -0.3950358 -0.3459011 -0.02555483  0.09663386  0.18660226 

5       5  0.1002148 -0.2669454  1.41415166  0.54759190 -0.16464905 

         SER        FIN        SPS          TC 

1 -0.8307239 -1.2040092 -0.8581401 -1.34050340 

2 -2.3907537  2.1697250 -3.0912894 -2.79992242 

3 -0.7532069 -1.4673862 -0.2168254  1.13240106 

4  0.5684581  0.4540118  0.3334455 -0.05945781 

5 -1.1621091 -1.1814341 -0.2855377  0.88105667 

> employ2<-data.frame(employ2,m.d81$cluster) 

> names(employ2)[10]<-"group" 

> head(employ2) 

         AGR        MIN          MAN         PS        CON        SER 

1 -0.7789667 -0.3662040  0.054281993  0.0000000 -0.4500407  0.2448245 

2 -0.5352011 -0.3774834  0.011984336 -0.1610564 -0.4134521 -0.2202775 

3 -0.5758287 -0.3549247 -0.009164492  0.1610564 -0.1573313  0.2060660 

4 -0.7302136 -0.3098071  0.477258563  0.3221129  0.6842083  0.3029623 

5  0.8136356 -0.3323659 -0.114908635  0.3221129 -0.2670973  0.4967548 

6  0.1310918 -0.3210865 -0.051462149  0.6442258 -0.1573313  0.4192378 

         FIN        SPS          TC group 

1  0.5142123  1.1345162  0.28107329     4 

2  0.6145464  1.0658039  0.44323096     4 

3  0.8904652  0.6993384 -0.04324205     4 

4  0.7399640  0.1610921 -0.69187272     4 

5 -0.3386276 -0.8237840  0.36215213     4 

6  0.4389617 -0.1710172 -0.52971505     4 

> plot(employ2$AGR,employ2$MAN,type="n") 

> text(employ2$AGR,employ2$MAN,labels=employ[,1], 

+ cex=0.5,col=employ2$group) 

> #try to play with interpretation of these results 

>  
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>  

> dogs<-read.delim2("dogs.txt",head=T,sep="\t") 

> summary(dogs) 

           Group        MBrth             MHgt            Mol1L        

              :18   Min.   : 0.000   Min.   : 0.000   Min.   : 0.000   

 Chinese wolf : 1   1st Qu.: 0.250   1st Qu.: 1.000   1st Qu.: 0.250   

 Cuon         : 1   Median : 1.000   Median : 1.000   Median : 1.000   

 Dingo        : 1   Mean   : 4.064   Mean   : 7.977   Mean   : 7.573   

 Golden jackal: 1   3rd Qu.: 9.225   3rd Qu.:19.925   3rd Qu.:18.900   

 Indian wolf  : 1   Max.   :13.500   Max.   :27.300   Max.   :26.800   

 (Other)      : 2   NA's   : 3.000   NA's   : 3.000   NA's   : 3.000   

     Mol1B            Mol13L          Mol14L            X        

 Min.   : 0.000   Min.   : 0.00   Min.   : 0.00   Min.   : 0.0   

 1st Qu.: 0.000   1st Qu.: 0.25   1st Qu.: 0.25   1st Qu.: 0.0   

 Median : 1.000   Median : 1.00   Median : 1.00   Median : 1.0   

 Mean   : 3.250   Mean   :11.62   Mean   :13.35   Mean   : 1.2   

 3rd Qu.: 7.525   3rd Qu.:29.93   3rd Qu.:34.48   3rd Qu.: 1.0   

 Max.   :10.600   Max.   :41.90   Max.   :48.10   Max.   : 9.0   

 NA's   : 3.000   NA's   : 3.00   NA's   : 3.00   NA's   :10.0   

      X.1               X.2              X.3           X.4          

 Min.   : 0.0000   Min.   : 0.000   Min.   : 0.000   Mode:logical   

 1st Qu.: 0.0000   1st Qu.: 1.000   1st Qu.: 0.000   NA's:25        

 Median : 1.0000   Median : 1.000   Median : 1.000                  

 Mean   : 0.9333   Mean   : 1.467   Mean   : 1.067                  

 3rd Qu.: 1.0000   3rd Qu.: 1.000   3rd Qu.: 1.000                  

 Max.   : 7.0000   Max.   :11.000   Max.   : 8.000                  

 NA's   :10.0000   NA's   :10.000   NA's   :10.000                  

      X.5     

 Min.   : 1   

 1st Qu.: 1   

 Median : 1   

 Mean   : 1   

 3rd Qu.: 1   

 Max.   : 1   

 NA's   :13   

> dogs<-dogs[-(8:25),-(8:13)] 

> m.d82<-kmeans(scale(dogs[,-c(1,8)]),3) 

> dogs<-data.frame(dogs,group=m.d82$cluster) 

> plot(dogs$MBrth,dogs$MHgt,type="n") 

> text(dogs$MBrth,dogs$MHgt,labels=dogs$Group, 

+ cex=0.7,col=dogs$group) 

 

 To illustrate that unfortunately clustering based on centroids is ambiguous we we’ll 

analyse simple data on two variables that are a priori divided into groups. We’ll see if we’re able 

to reproduce this pattern of grouping. 

> ###code block D9 

>  

> kmd <- read.table("kmeansdata.txt",head=T,sep="\t") 

> head(kmd) 

          x         y group 
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1  2.918896  8.587122     2 

2 10.724510  8.194907     1 

3  5.588091 10.382890     2 

4  6.619314  5.399704     5 

5  8.725792  4.253471     5 

6  9.923255  3.216071     4 

> m.d91 <- kmeans(kmd[,1:2],6) 

> m.d92 <- kmeans(kmd[,1:2],4) 

> par(mfrow=c(2,2)) 

> with(kmd,plot(x,y,pch=20)) 

> with(kmd,plot(x,y,pch=20,col=group)) 

> with(kmd,plot(x,y,pch=20,col=m.d91[[1]])) 

> with(kmd,plot(x,y,pch=20,col=m.d92[[1]])) 

> par(mfrow=c(1,1)) 

> #lets check accuracy of assignment 

> table(m.d91[[1]],kmd$group) 

    

     1  2  3  4  5  6 

  1  0 24  0  0  3  0 

  2  0  0 25  0  0  0 

  3  0  1  0  1 26  0 

  4  0  0  0 15  0  0 

  5  0  0  0  0  0 25 

  6 20  0  0  4  1  0 

>  

> #to conlcude - not so accurate! 

 

 Apart from these simple depictions we might also have some more sophisticated 

illustrations. 

> ###code block D9a 

>  

> install.packages("cluster");install.packages("fpc");library(cluster) 

> library(fpc) 

> clusplot(kmd[,1:2],m.d92$cluster,color=T,shade=T,labels=2,lines=1) 

> plotcluster(kmd[,1:2],m.d91$cluster) 

 

 Much more accurate are hierarchical methods. They not only group objects but also 

create whole hierarchy of grouping allowing to track increasing/decreasing similarity of objects 

and their groups. These methods are most similar to what is thought of as phylogenetic trees. 

We’ll see how they perform using the same data sets. 

> ###code block D10 

>  

> demploy <- dist(employ[,-c(1:2)],method="euclidean") 

> ddogs <- dist(dogs[,-c(1,8)],method="euclidea") 

> m.10a <- hclust(demploy,method="ward") 

> plot(m.10a,labels=paste(employ[,1],employ[,2]),cex=0.7) 

> #grouped <- cutree(m.10a,3) 

> rect.hclust(m.10a, k=3, border="red") 

>  
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> m.10b <- hclust(ddogs,method="ward") 

> plot(m.10b,labels=dogs[,1],cex=0.7) 

>  

> #to test relationships within a tree use the following 

> #remeber to transpose data as pvclust clusterscolumns not rows 

> temploy<-as.data.frame(t(employ)) 

> temploy<-temploy[-c(1:2),] 

> names(temploy)<- paste(employ[,1],employ[,2]) 

> install.packages("pvclust");library(pvclust) 

> m.10aa <- pvclust(temploy,method.hclust="ward",method.dist="euclidean") 

Bootstrap (r = 0.44)... Done. 

Bootstrap (r = 0.56)... Done. 

Bootstrap (r = 0.67)... Done. 

Bootstrap (r = 0.78)... Done. 

Bootstrap (r = 0.89)... Done. 

Bootstrap (r = 1.0)... Done. 

Bootstrap (r = 1.0)... Done. 

Bootstrap (r = 1.11)... Done. 

Bootstrap (r = 1.22)... Done. 

Bootstrap (r = 1.33)... Done. 

Warning message: 

In a$p[] <- c(1, bp[r == 1]) : 

  number of items to replace is not a multiple of replacement length 

> plot(m.10aa,cex=0.7) 

> pvrect(m.10aa,alpha=0.95) 

>  

> #finally you might want to use ML methods to choose most optimal solution 

>  

> install.packages("mclust");library(mclust) 

> m.10c <- Mclust(employ[,-c(1:2)]) 

> plot(m.10c,employ[,-c(1:2)])#several very informative plots 

Waiting to confirm page change... 

Waiting to confirm page change... 

Waiting to confirm page change... 

Waiting to confirm page change... 

 

Canonical correlation 

OK. Let’s move to something bigger. These two words were always associated with power and 

multidimensionality. Canonical correlation can be regarded as more advanced version of PCA. 

The latter looks at variance and maximizes it whereas the former looks at correlations and 

maximizes them. Where in PCA we get PCs, in CC we gat canonical correlations, in order of 

decreasing relationship strength. CCA can also be regarded as generalisation of multiple 

regression for the cases with many response variables. 

 We’ll be analysing two datasets. The first one contains data on 16 colonies of the 

butterfly Euphydrys editha, comprising four environmental variables and six genetic parameters. 

We’ll look for relationship between environmental variables and genetics. Before we start we’ll 

have to change the data a little. Since genetic parameters are percentages of presence of six 
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phosphoglucose-isomerase genes we have to omit one gene – 1.30 - (to prevent these 

frequencies from summing to 100). Further, we’ll combine percentages for 0.40 and 0.60 genes 

as their frequencies are low. 

 Second data-set contains information on soil-related and vegetation related variables in 

some Maya-related archaeological locations in Belize. The relationships we’re looking for are 

between soil and vegetation. 

> ###code block D11 

>  

> install.packages("CCA") 

> library(CCA) 

> install.packages("yacca") 

> library(yacca) 

>  

> belize<-read.table("belize.txt",head=T,sep="\t") 

> butter <- read.table("butter.txt",head=T,sep="\t") 

>  

> #first lets look at correlations 

> summary(butter) 

     Colony       altid          prcipit           maxT        

 AF     : 1   Min.   :  380   Min.   :10.00   Min.   : 81.00   

 CR     : 1   1st Qu.:  565   1st Qu.:19.75   1st Qu.: 98.00   

 DP     : 1   Median :  869   Median :25.00   Median : 99.00   

 GH     : 1   Mean   : 2102   Mean   :28.06   Mean   : 97.25   

 GL     : 1   3rd Qu.: 2000   3rd Qu.:36.00   3rd Qu.:101.00   

 IF     : 1   Max.   :10500   Max.   :58.00   Max.   :105.00   

 (Other):10                                                    

      minT             g040            g060             g080       

 Min.   :-12.00   Min.   : 0.00   Min.   : 0.000   Min.   : 1.00   

 1st Qu.: 17.75   1st Qu.: 0.00   1st Qu.: 2.750   1st Qu.:12.50   

 Median : 26.00   Median : 0.00   Median : 4.500   Median :18.00   

 Mean   : 20.88   Mean   : 1.75   Mean   : 7.188   Mean   :18.56   

 3rd Qu.: 27.00   3rd Qu.: 0.25   3rd Qu.: 7.500   3rd Qu.:23.50   

 Max.   : 32.00   Max.   :14.00   Max.   :26.000   Max.   :40.00   

                                                                   

      g100            g116            g130        

 Min.   :25.00   Min.   : 0.00   Min.   : 0.000   

 1st Qu.:36.75   1st Qu.:10.00   1st Qu.: 0.000   

 Median :47.00   Median :17.00   Median : 3.000   

 Mean   :51.19   Mean   :17.19   Mean   : 4.125   

 3rd Qu.:59.25   3rd Qu.:27.00   3rd Qu.: 6.500   

 Max.   :92.00   Max.   :35.00   Max.   :14.000   

                                                  

> envir<-as.data.frame(scale(butter[,2:5])) 

> genet<-as.data.frame(scale(butter[,6:10])) 

> genet[,1]<-genet[,1]+genet[,2] 

> genet<-genet[,-2] 

> names(genet)[1]<-"g040060" 

>  

> matcor(envir,genet) 

$Xcor 
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             altid    prcipit       maxT       minT 

altid    1.0000000  0.5674063 -0.8279572 -0.9359200 

prcipit  0.5674063  1.0000000 -0.4786956 -0.7046199 

maxT    -0.8279572 -0.4786956  1.0000000  0.7191035 

minT    -0.9359200 -0.7046199  0.7191035  1.0000000 

 

$Ycor 

           g040060       g080       g100       g116 

g040060  1.0000000  0.6401128 -0.5604365 -0.5725101 

g080     0.6401128  1.0000000 -0.8234638 -0.1266726 

g100    -0.5604365 -0.8234638  1.0000000 -0.2637612 

g116    -0.5725101 -0.1266726 -0.2637612  1.0000000 

 

$XYcor 

             altid    prcipit       maxT       minT    g040060 

altid    1.0000000  0.5674063 -0.8279572 -0.9359200 -0.2037111 

prcipit  0.5674063  1.0000000 -0.4786956 -0.7046199 -0.4879830 

maxT    -0.8279572 -0.4786956  1.0000000  0.7191035  0.2432135 

minT    -0.9359200 -0.7046199  0.7191035  1.0000000  0.2426795 

g040060 -0.2037111 -0.4879830  0.2432135  0.2426795  1.0000000 

g080    -0.5728800 -0.5497990  0.5357866  0.5933225  0.6401128 

g100     0.7268903  0.6990375 -0.7172780 -0.7590314 -0.5604365 

g116    -0.4578018 -0.1380033  0.4383080  0.4122114 -0.5725101 

              g080       g100       g116 

altid   -0.5728800  0.7268903 -0.4578018 

prcipit -0.5497990  0.6990375 -0.1380033 

maxT     0.5357866 -0.7172780  0.4383080 

minT     0.5933225 -0.7590314  0.4122114 

g040060  0.6401128 -0.5604365 -0.5725101 

g080     1.0000000 -0.8234638 -0.1266726 

g100    -0.8234638  1.0000000 -0.2637612 

g116    -0.1266726 -0.2637612  1.0000000 

 

> #note high correlations among variables - this should  be avoided 

> #and in general such data should not be qualified for CCA 

> #we'll do CCA as an instructuive example 

>  

>  

> m.d11a <- cca(envir,genet) 

> m.d11a$xcoef 

              CV 1        CV 2        CV 3       CV 4 

altid   -0.1480997 -1.25319075  3.27195606 -2.0508141 

prcipit -0.3432402 -1.46021241 -0.01621605 -0.4409097 

maxT     0.4872846 -0.07857902  0.43274794 -1.8015295 

minT     0.1744802 -2.44463710  2.84326319 -0.6517615 

> m.d11a$ycoef 

               CV 1       CV 2      CV 3       CV 4 

g040060  0.30016891 1.17079158 -1.239480 -0.1927490 

g080     0.39215037 0.04270905 -2.221736  1.5223304 

g100    -0.09604674 1.55674499 -4.238341  0.8202052 

g116     0.81846126 1.13726187 -3.100224 -0.3943251 

> m.d11a$corr 
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      CV 1       CV 2       CV 3       CV 4  

0.86513953 0.46847806 0.40093924 0.09911816  

> 1-pchisq(m.d11a$chisq,m.d11a$df)#non significant variables 

     CV 1      CV 2      CV 3      CV 4  

0.2667287 0.8719932 0.7460977 0.7474734  

> #U1 - contrast of temperature and precipitation 

> #V1 - positive loadings for 0.40, 0.60, 0.80, 1.16 genes 

> m.d11a$xstructcorr#U1 describes low precipit/altitude and high 

temperatures 

              CV 1        CV 2       CV 3       CV 4 

altid   -0.9096067  0.27132042  0.2433912 -0.1994030 

prcipit -0.7834761 -0.41112540 -0.3702618 -0.2829263 

maxT     0.8996817 -0.09994043 -0.2239288 -0.3611656 

minT     0.9053516 -0.29936248  0.1035906  0.2828242 

> m.d11a$ystructcorr#V1 describes best high freqs of 40,60,80 and 116 genes 

              CV 1        CV 2       CV 3       CV 4 

g040060  0.4144094  0.75878260  0.3407777  0.3693026 

g080     0.7376384  0.06017695  0.1329623  0.6592340 

g100    -0.9588563 -0.04217106 -0.2531783 -0.1213130 

g116     0.4631300 -0.56976425 -0.3341328 -0.5909607 

> plot(m.d11a$canvarx[,1],m.d11a$canvary[,1],type="n",xlab="U1",ylab="V1") 

> text(m.d11a$canvarx[,1],m.d11a$canvary[,1],labels=butter[,1],cex=.7) 

> abline(h=0,v=0,lty=2) 

>  

> summary(belize) 

      Case          limeEnr          meadowCa       coralLime       

 Min.   :  1.0   Min.   :  0.00   Min.   : 0.00   Min.   :  0.000   

 1st Qu.: 38.5   1st Qu.: 20.00   1st Qu.: 0.00   1st Qu.:  0.000   

 Median : 76.0   Median : 50.00   Median : 0.00   Median :  0.000   

 Mean   : 76.0   Mean   : 47.71   Mean   :11.32   Mean   :  9.854   

 3rd Qu.:113.5   3rd Qu.: 75.00   3rd Qu.:20.00   3rd Qu.:  0.000   

 Max.   :151.0   Max.   :100.00   Max.   :80.00   Max.   :100.000   

 alluvialSaline      decid            marsh             palm        

 Min.   : 0.00   Min.   :  0.00   Min.   :  0.00   Min.   : 0.000   

 1st Qu.: 0.00   1st Qu.:  7.50   1st Qu.: 10.00   1st Qu.: 0.000   

 Median :10.00   Median : 50.00   Median : 40.00   Median : 0.000   

 Mean   :20.15   Mean   : 43.31   Mean   : 43.05   Mean   : 1.026   

 3rd Qu.:40.00   3rd Qu.: 75.00   3rd Qu.: 70.00   3rd Qu.: 0.000   

 Max.   :90.00   Max.   :100.00   Max.   :100.00   Max.   :50.000   

     mixed        

 Min.   : 0.000   

 1st Qu.: 0.000   

 Median : 0.000   

 Mean   : 2.351   

 3rd Qu.: 0.000   

 Max.   :90.000   

> soil<-as.data.frame(scale(belize[,2:5])) 

> vege<-as.data.frame(scale(belize[,6:9])) 

> #percentages do not add up to 100 so we dont have to remove any variables 

> matcor(soil,vege) 

$Xcor 

                  limeEnr    meadowCa   coralLime alluvialSaline 



Szymon Drobniak – Advanced approaches to linear modeling and multivariate statistics in R  

Uppsala, 18-21.01.2010 

110 

 

limeEnr         1.0000000 -0.14326685 -0.40885658    -0.46922525 

meadowCa       -0.1432668  1.00000000 -0.09588203    -0.09483207 

coralLime      -0.4088566 -0.09588203  1.00000000    -0.23873341 

alluvialSaline -0.4692253 -0.09483207 -0.23873341     1.00000000 

 

$Ycor 

            decid       marsh        palm       mixed 

decid  1.00000000 -0.78605573 -0.05950747 -0.15400206 

marsh -0.78605573  1.00000000 -0.06817932 -0.13657853 

palm  -0.05950747 -0.06817932  1.00000000 -0.02351585 

mixed -0.15400206 -0.13657853 -0.02351585  1.00000000 

 

$XYcor 

                   limeEnr    meadowCa   coralLime alluvialSaline 

limeEnr         1.00000000 -0.14326685 -0.40885658    -0.46922525 

meadowCa       -0.14326685  1.00000000 -0.09588203    -0.09483207 

coralLime      -0.40885658 -0.09588203  1.00000000    -0.23873341 

alluvialSaline -0.46922525 -0.09483207 -0.23873341     1.00000000 

decid           0.37826377 -0.22909283  0.34875268    -0.39405458 

marsh          -0.26932914  0.38308412 -0.22379544     0.34748408 

palm           -0.02920585 -0.10448319 -0.01721720     0.20699455 

mixed           0.14137377 -0.04942136 -0.07477096    -0.01281809 

                     decid       marsh        palm       mixed 

limeEnr         0.37826377 -0.26932914 -0.02920585  0.14137377 

meadowCa       -0.22909283  0.38308412 -0.10448319 -0.04942136 

coralLime       0.34875268 -0.22379544 -0.01721720 -0.07477096 

alluvialSaline -0.39405458  0.34748408  0.20699455 -0.01281809 

decid           1.00000000 -0.78605573 -0.05950747 -0.15400206 

marsh          -0.78605573  1.00000000 -0.06817932 -0.13657853 

palm           -0.05950747 -0.06817932  1.00000000 -0.02351585 

mixed          -0.15400206 -0.13657853 -0.02351585  1.00000000 

 

> m.d11b<-cca(soil,vege) 

> m.d11b$xcoef 

                    CV 1       CV 2       CV 3        CV 4 

limeEnr        1.3255395 -0.4989341  0.3836752  0.43805739 

meadowCa       0.2870778 -0.8799652 -0.5703078  0.01739138 

coralLime      1.1212504 -0.2916985  0.1427833 -0.71860445 

alluvialSaline 0.5561916 -0.9665043  0.8666097 -0.15160040 

> m.d11b$ycoef 

           CV 1       CV 2       CV 3        CV 4 

decid 1.6768275 -0.6967539 -0.2208609 -0.12032174 

marsh 1.0018424 -1.5000802 -0.3046702 -0.01098072 

palm  0.2156676 -0.3172089  0.9165872 -0.26264203 

mixed 0.5081984 -0.3062062  0.2004938  0.93469975 

> m.d11b$corr 

     CV 1      CV 2      CV 3      CV 4  

0.7610692 0.5324149 0.2382218 0.1214940  

> 1-pchisq(m.d11b$chisq,m.d11b$df)#significant variables 

        CV 1         CV 2         CV 3         CV 4  

0.000000e+00 1.942401e-09 3.060714e-02 1.413036e-01  

> m.d11b$xstructcorr 
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                      CV 1       CV 2          CV 3        CV 4 

limeEnr         0.56500103  0.1999069  0.0003682975  0.80050667 

meadowCa       -0.06308064 -0.6888603 -0.7211485117  0.03791011 

coralLime       0.41898770  0.2274037 -0.1662912582 -0.86318254 

alluvialSaline -0.36068909 -0.5793048  0.7065760097 -0.18724236 

> m.d11b$ystructcorr 

             CV 1        CV 2        CV 3        CV 4 

decid  0.79822609  0.54842546 -0.06679338 -0.24000680 

marsh -0.40035051 -0.88894455 -0.22093666 -0.02615429 

palm   0.03562821 -0.16627171  0.94578747 -0.27671359 

mixed  0.10806174  0.01343353  0.25456389  0.96090552 

> #U1 - presence of soils 1 and 3 

> #V1 - deciduous forest 

> #U2 - soils 2 and 4 

> #V2 - marshes and absence of deciduous forests 

> #U3 - soil 4 and absence of soil 2 

> #V3 - presence of palms 

> #U4 - presence of soil 3 and absence of soil 1 

> #V4 - absence of mixed forest 

> ccvars <- as.data.frame(cbind(m.d11b$canvarx,m.d11b$canvary)) 

> names(ccvars)[1:4]<-c("u1","u2","u3","u4") 

> names(ccvars)[5:8]<-c("v1","v2","v3","v4") 

> xyplot(v4+v3+v2+v1~u1+u2+u3+u4,data=ccvars,outer=T) 

 

Short on discriminant function analysis  

DFA is the last one of many clustering routines in R. It works slightly different than methods 

presented so far. Briefly, it attempts to form (as a linear or quadratic combination) so called 

discriminant functions of decreasing predictive power that should be able to assign objects to 

groups based on their measurements. In the first step we form these discriminant functions 

based on our data and known assignments of objects to groups. Then we hope that we will be 

able to use this DFs as tools to assign new objects to groups based on the same measurements. 

 In R most useful and simple DF routines are in the package MASS. We’ll briefly consider 

their application, using example data on European countries. 

> ###code block D12 

>  

> library(MASS) 

>  

> summary(employ)#we'll try to assign countries to the econimic groups 

using employment data 

              Country       Group         AGR             MIN         

 Albania          : 1   Eastern: 8   Min.   : 0.00   Min.   : 0.000   

 Austria          : 1   EFTA   : 6   1st Qu.: 4.40   1st Qu.: 0.125   

 Belgium          : 1   EU     :12   Median : 8.45   Median : 0.500   

 Bulgaria         : 1   Other  : 4   Mean   :12.19   Mean   : 3.447   

 Cyprus           : 1                3rd Qu.:14.93   3rd Qu.: 1.050   

 Czech/Slovak Reps: 1                Max.   :55.50   Max.   :37.300   

 (Other)          :24                                                 
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      MAN              PS             CON             SER        

 Min.   : 0.00   Min.   :0.000   Min.   : 0.60   Min.   : 3.30   

 1st Qu.:19.00   1st Qu.:0.275   1st Qu.: 6.40   1st Qu.:12.62   

 Median :20.30   Median :0.800   Median : 7.05   Median :16.80   

 Mean   :20.29   Mean   :0.800   Mean   : 7.53   Mean   :15.64   

 3rd Qu.:24.55   3rd Qu.:1.175   3rd Qu.: 9.10   3rd Qu.:19.62   

 Max.   :38.70   Max.   :2.200   Max.   :16.90   Max.   :24.50   

                                                                 

      FIN              SPS              TC        

 Min.   : 0.000   Min.   : 0.00   Min.   :3.000   

 1st Qu.: 3.300   1st Qu.:22.95   1st Qu.:5.800   

 Median : 7.150   Median :27.00   Median :6.750   

 Mean   : 6.650   Mean   :26.99   Mean   :6.453   

 3rd Qu.: 9.325   3rd Qu.:33.17   3rd Qu.:7.150   

 Max.   :15.300   Max.   :41.60   Max.   :8.800   

                                                  

> m.d12a <- lda(Group~AGR+MIN+MAN+PS+CON+SER+FIN+SPS+TC,data=employ,CV=T) 

> ct <- table(employ$Group,m.d12a$class) 

> diag(prop.table(ct))#proportions of correct assignments for eachcategory 

of Group 

   Eastern       EFTA         EU      Other  

0.20000000 0.06666667 0.26666667 0.00000000  

> sum(diag(prop.table(ct)))#and total % of correct assignemnts - not so 

good 

[1] 0.5333333 

>  

> #advanced illustration of DF 

> install.packages("klaR");library(klaR) 

> dogsa <- read.delim2("dogsall.txt",sep="\t",head=T) 

> dogsa<-dogsa[-c(78:88),] 

> dogsa<-gdata::drop.levels(dogsa) 

> partimat(Group~X1+X2+X3+X4,data=dogsa,method="lda") 

> #alternatively we can use quadratic discriminant function 

> partimat(Group~X1+X2+X3+X4,data=dogsa,method="qda") 

 

Visualizing multivariate data 

Our last journey through multivariate data will have some of artistic taste. We often encounter 

problem of showing our multivariate data. We have several options and we’ll go through them 

briefly in this section. 

> ###code block D13 

>  

> #pairwise plot 

> #good but captures no multivariate influence of other traits 

> pairs(dogs[,-c(1,8)]) 

> pairs(employ[,-c(1,2)][,1:5]) 

>  

> #perspective plot 

> install.packages("scatterplot3d") 

> install.packages("Rcmdr") 
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> library(scatterplot3d);library(rgl);library(Rcmdr) 

>  

> scatterplot3d(dogs$MBrth,dogs$MHgt,dogs$Mol1L,type="h") 

> plot3d(dogs$MBrth,dogs$MHgt,dogs$Mol1L,col="red",size=3) 

> scatter3d(dogs$MBrth,dogs$MHgt,dogs$Mol1L) 

>  

> #Chernoff faces 

> install.packages("TeachingDemos");library(TeachingDemos) 

 

> faces2(scale(dogs[,-c(1,8)]),labels=dogs[,1]) 

> faces2(scale(employ[,-c(1,2)]),labels=employ[,1]) 

>  

> #star plots 

> stars(scale(dogs[,-c(1,8)]),labels=dogs[,1]) 

 

Regression trees 

Among all modern multivariate techniques – regression trees are the least known, despite their 

great usability. What are regression trees? They can be seen as tree representations of 

multivariate (multiple) regressions. They cannot be used in estimation but are extremely helpful 

when developing  multiple regression models. They can be especially useful when deciding 

whether to include – or not – interactions. In multivariate problems, where interactions can be 

generated in huge numbers, it seems essential to be able to arbitrarily decide whether to include 

– or not – interaction terms. 

 We will analyse here simple data-set describing the taste of different kinds of cheese 

based on some biochemical features. We will see how these features contribute to explaining 

variability in cheese taste and can we a priori see if there’s potential for interactions. 

> ###code block D14 

>  

> cheese <- read.table(file="cheese.txt", head=T, sep="\t") 

> cheese <- cheese[,-1] 

> pairs(cheese, panel=panel.smooth) 

> #strong collinearity can be spotted 

> #we'll ignore it but beware - it should be dealt with 

>  

> #at the beginning it'salways best to check for possible curvilinear 

trends 

> #we can then include them as polynomial terms in our models 

> install.packages("mgcv");library(mgcv) 

> par(mfrow=c(2,2)) 

> m.d14a <- gam(taste~s(Acetic)+s(H2S)+s(Lactic), data=cheese) 

> plot(m.d14a) 

> par(mfrow=c(2,2)) 

> m.d14b <- gam(AGR~s(SER)+s(FIN)+s(MIN),data=employ) 

> plot(m.d14b) 

> par(mfrow=c(1,1)) 

>  

> #now we'll employ tree regression methods 
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> install.packages("tree");library(tree) 

> m.d14c <- tree(taste~.,data=cheese) 

> plot(m.d14c);text(m.d14c) 

> #it seems that the only significant terms are H2S and Lactic Acid 

> #equal lengths of all branches and forks indicates lack of any 

interaction 

>  

> #lets verify this by fitting overparametrised model and simplifying it 

using AIC 

> m.d14d <- lm(taste ~ Acetic+Lactic+H2S+Acetic*Lactic*H2S-

Acetic:Lactic:H2S, 

+ data = cheese) 

> summary(m.d14d) 

 

Call: 

lm(formula = taste ~ Acetic + Lactic + H2S + Acetic * Lactic *  

    H2S - Acetic:Lactic:H2S, data = cheese) 

 

Residuals: 

    Min      1Q  Median      3Q     Max  

-19.675  -5.273  -1.011   5.785  25.072  

 

Coefficients: 

              Estimate Std. Error t value Pr(>|t|) 

(Intercept)   104.5479   102.2068   1.023    0.317 

Acetic        -30.7974    23.9574  -1.286    0.211 

Lactic        -60.1029   116.5393  -0.516    0.611 

H2S             6.1573    20.9537   0.294    0.772 

Acetic:Lactic  19.0531    22.6367   0.842    0.409 

Acetic:H2S      0.5734     3.5246   0.163    0.872 

Lactic:H2S     -3.6493     4.4944  -0.812    0.425 

 

Residual standard error: 10.33 on 23 degrees of freedom 

Multiple R-squared: 0.6795,     Adjusted R-squared: 0.5959  

F-statistic: 8.127 on 6 and 23 DF,  p-value: 8.718e-05  

 

> m.d14e<-step(m.d14d) 

Start:  AIC=146.15 

taste ~ Acetic + Lactic + H2S + Acetic * Lactic * H2S - Acetic:Lactic:H2S 

 

                Df Sum of Sq    RSS    AIC 

- Acetic:H2S     1     2.826 2458.9 144.19 

- Lactic:H2S     1    70.402 2526.4 145.00 

- Acetic:Lactic  1    75.651 2531.7 145.06 

<none>                       2456.0 146.15 

 

Step:  AIC=144.19 

taste ~ Acetic + Lactic + H2S + Acetic:Lactic + Lactic:H2S 

 

                Df Sum of Sq    RSS    AIC 

- Lactic:H2S     1    69.427 2528.3 143.02 

<none>                       2458.9 144.19 
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- Acetic:Lactic  1   204.750 2663.6 144.59 

 

Step:  AIC=143.02 

taste ~ Acetic + Lactic + H2S + Acetic:Lactic 

 

                Df Sum of Sq    RSS    AIC 

- Acetic:Lactic  1    140.13 2668.4 142.64 

<none>                       2528.3 143.02 

- H2S            1    992.67 3521.0 150.96 

 

Step:  AIC=142.64 

taste ~ Acetic + Lactic + H2S 

 

         Df Sum of Sq    RSS    AIC 

- Acetic  1      0.55 2669.0 140.65 

<none>                2668.4 142.64 

- Lactic  1    533.32 3201.7 146.11 

- H2S     1   1007.66 3676.1 150.25 

 

Step:  AIC=140.65 

taste ~ Lactic + H2S 

 

         Df Sum of Sq    RSS    AIC 

<none>                2669.0 140.65 

- Lactic  1    617.18 3286.1 144.89 

- H2S     1   1193.52 3862.5 149.74 

> summary(m.d14e) 

 

Call: 

lm(formula = taste ~ Lactic + H2S, data = cheese) 

 

Residuals: 

    Min      1Q  Median      3Q     Max  

-17.343  -6.530  -1.164   4.844  25.618  

 

Coefficients: 

            Estimate Std. Error t value Pr(>|t|)    

(Intercept)  -27.592      8.982  -3.072  0.00481 ** 

Lactic        19.887      7.959   2.499  0.01885 *  

H2S            3.946      1.136   3.475  0.00174 ** 

--- 

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1  

 

Residual standard error: 9.942 on 27 degrees of freedom 

Multiple R-squared: 0.6517,     Adjusted R-squared: 0.6259  

F-statistic: 25.26 on 2 and 27 DF,  p-value: 6.551e-07 

 

 Great thing about regression trees is that they can be used to discover patterns allowing 

for successful taxonomical classification of objects. Here we will consider simple case of the 

genus Epilobium and see if – based on several morphological measurements, we are able to 

create simple classification criteria for these plants. 
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> ###code block D15 

>  

> epilo<- read.table("taxonomy.txt",head=T,sep="\t") 

> pairs(epilo[,-1],col=epilo$Taxon) 

> #several discontinuities are visible in several morphology traits 

> #tree model finds unambigous separation easily 

> m.d15a <- tree(Taxon~., epilo) 

> plot(m.d15a);text(m.d15a) 

> print(m.d15a)#raw key-like output from tree() 

node), split, n, deviance, yval, (yprob) 

      * denotes terminal node 

 

1) root 120 332.70 I ( 0.2500 0.2500 0.2500 0.2500 )   

  2) Sepal < 3.53232 90 197.80 I ( 0.3333 0.3333 0.3333 0.0000 )   

    4) Leaf < 2.00426 60  83.18 I ( 0.5000 0.5000 0.0000 0.0000 )   

      8) Petiole < 9.91246 30   0.00 II ( 0.0000 1.0000 0.0000 0.0000 ) * 

      9) Petiole > 9.91246 30   0.00 I ( 1.0000 0.0000 0.0000 0.0000 ) * 

    5) Leaf > 2.00426 30   0.00 III ( 0.0000 0.0000 1.0000 0.0000 ) * 

  3) Sepal > 3.53232 30   0.00 IV ( 0.0000 0.0000 0.0000 1.0000 ) * 

>  

> #as sepal and leaf traits are the easiest separators we'll 

> #depict our individuals onthe phase-plane of these two traits 

> m.d15b<-tree(Taxon~Sepal+Leaf,epilo) 

> partition.tree(m.d15b) 

> attach(epilo) 

> labels <- 

ifelse(Taxon=="I","a",ifelse(Taxon=="II","b",ifelse(Taxon=="III","c","d"))) 

> text(Sepal,Leaf,labels) 

> detach(epilo) 
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