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ABSTRACT

A modification of the logistic equation is critically analysed and its application to competition
between sexual and asexual populations presented. Such a model of competition can be a
formal representation of the tangled bank hypothesis of the evolution and maintenance of
sexuality. It shows that the elimination of asexual individuals by sexual ones is possible only if
the size of the habitat or the width of the ecological niche of sexual individuals is twice as large
as that of asexual ones. Co-existence of these two forms is theoretically possible under much
less rigid conditions. Nevertheless, such co-existence does not imply that the ecological cost of
the elimination of asexual individuals by sexual ones is lower than the commonly accepted
biological cost of such elimination.
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INTRODUCTION

In spite of criticism of the logistic equation (Andrewartha and Birch, 1954; Łomnicki, 1988;
Slobodkin, 2001),

Ṅ = rN(1 − N/K) (1)

(where N denotes population size, Ṅ its change with respect to time and K is carrying
capacity) is the most popular way of describing limited growth of populations. The logistic
equation still plays a central role in theoretical population ecology, as there is no good
alternative.

One feature of the logistic equation is an ambiguous definition of carrying capacity,
K. For game managers, carrying capacity is the number of deer that an area can support
without visible devastation of plant cover. Carrying capacity is also defined as the number
(K) of places (e.g. nesting holes) in which a single individual or a pair may live. It implies
that, at equilibrium, all available places are occupied, provided the intrinsic rate of increase
r > 0. This means that, after the death of an individual, another one immediately occupies
its place. This, in turn, means that there are some individuals seeking empty places, so that
the population is divided into established individuals and floaters.
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Another possible definition of carrying capacity is the equilibrium point at which the
birth rate equals the death rate, so that K is determined not only by the size of the habitat
or the number of available places, but also by the birth and death rates. The positive
dependence of saturation density, K, on the rate of growth was confirmed in selection
experiments on protozoa by Luckinbill (1979). If this is the case, then the relation between
the birth rate, death rate and carrying capacity should be clearly determined. This would be
of value even if made for a special case only.

A modified form of limited population growth allows for the dependence of equilibrium
population size on reproduction and mortality, as shown in my derivation (Łomnicki,
1988) based on the metapopulation model of Levins (1970). A close examination of its
applicability and its relation to the classical form of the logistic equation would be useful.
It may reveal the mechanism of limited population growth and competition in relation to
the evolution of sexuality.

THE MODEL

Consider a habitat with H discrete places, each one able to support an individual animal or
plant. Instead of considering the number of individuals N, it is more convenient to think in
terms of the proportion of occupied places x, so that N = xH. A change in this proportion
over time is given by the differential equation

ẋ = (1 − x)ax − dx (2)

Although this model was used to describe the dynamics of a population (Doncaster et al.,
2000) or metapopulation (Levins, 1970), its parameters and limitations are rarely clearly
articulated. Below I attempt to describe in detail the biological situation related to this
model and to define its parameters as precisely as possible. The proportion (1 − x) of empty
places is colonized at rate ax, while the proportion x of places occupied by established
individuals become empty places with the death of these individuals at death rate d. The
product ax is the number of propagules or seeds that reach a place, irrespective of whether
it is occupied or empty. Parameter a is the colonization ability of a given population
and is linearly related to the birth rate. However, it is neither the colonization rate nor the
birth rate. The colonization rate or colonization probability depends on the number of
immigrants per place, whether occupied or empty, while this number depends in turn on the
proportion x of occupied places. Parameter a cannot be defined as the birth rate, since it
also includes the ability to reach an appropriate empty place. This is determined not only by
physiological and behavioural features of dispersing individuals, but also by the properties
of their habitat. If appropriate places are far away from each other within a hostile area
with many predators, then a has much lower values.

An important feature of this model is continuous time, so that the value of the product
ax can be very low and therefore equal to the probability of colonization within a time
unit, or the rate of colonization. However, when dispersion and colonization are seasonal
phenomena, a discrete model of population growth has to be applied. One can then expect
a high number of propagules per place for every time unit. From the Poisson distribution,
the probability that at least one individual is able to reach a place is given by 1 − e−ax, and
equation (2) takes the form

xt + 1 = xt + (1 − xt)[1 − exp(−axt)] − dxt (3)
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The two models given by equations (2) and (3) describe a population for which
the number of available places is fixed; that is, it does not depend on population density or
the density of dispersing propagules. The linear negative dependence of the increase in the
number of established individuals is due to the shortage of available places, and it is the
only density-dependent process allowed by this model, since the mortality, d, of established
individuals is constant and density-independent. There is no Allee effect, and a propagule
arriving at an occupied place cannot search for another one but dies without establishing
itself. Therefore, parameter d is not the death rate, as usually defined, since it does not
include the mortality of propagules searching for places to establish themselves; it only
includes the death rate of established individuals. One may call parameter a the birth rate
and parameter d the death rate, but their meanings are different from those commonly
accepted in theoretical ecology.

The population dynamics described by equation (2) have two equilibria: a trivial one at
x = 0 and a locally and globally stable one at x = k, defined by

k = 1 − d/a (4)

This is the population size at equilibrium expressed as the proportion of occupied places.
Since the population size N = xH, where H is the number of available places, then the
population size at equilibrium L is given by L = kH or, from equation (4),

L = H(1 − d/a) (5)

After multiplying equation (2) by H, so that the population dynamics are expressed as the
number N of individuals, and substituting H into it as defined by (5), one obtains

Ṅ = (a − d)N(1 − N/L) (6)

which is exactly the logistic equation but the parameters have a slightly different meaning.
I deliberately apply L instead of K to show that the equilibrium point L is not the
carrying capacity and that it is determined not only by the size of the habitat H, but also by
parameters related to the birth and death rates, a and d respectively.

INTERSPECIFIC COMPETITION

The classical Lotka-Volterra application of the logistic equation to interspecific competi-
tion for population i competing with population j is given by

Ṅi = ri (Ki − Ni − αij Nj )/Ki (7)

where αij denotes the inhibitory effect of an individual of population j on population i.
Providing the intrinsic rates of growth ri and rj are positive, the outcome of interspecies
competition is independent of the birth and death rates, as shown in ecology textbooks
(e.g. Begon et al., 1986). Such independence appears not only counterintuitive but also
very unlikely. This outcome depends only on the respective carrying capacities (the higher K
wins) and the very abstract and difficult-to-estimate parameter αij. This parameter can
measure differences and overlaps in the diets of two competitors, but it is difficult to imagine
how it can measure differences in birth and death rates or differences in other characters
that determine the outcome of competition.

The importance of birth and death rates in interspecies competition can be taken into
account by modifying equation (2) into the form
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ẋ = (hX − x − y)aXx − dXx (8)

where hX denotes the fraction of the places available to population X, which may overlap
more or less with the fraction available to population Y. The introduction of parameter
αXY does not make sense within this model, since an individual either does or does not
occupy an appropriate place but does not compete with another individual in the same
place.

COMPETITION BETWEEN SEXUAL AND ASEXUAL INDIVIDUALS

Assuming that sexual and asexual individuals do not interbreed (for an exception, see
Bell, 1982), they can be considered as populations of two different species competing
with each other in the same habitat. The tangled bank hypothesis postulates that sexual
forms, because they are more variable, are able to use resources and places not available to
asexual ones, as suggested by some empirical studies (Vrijenhoek and Pfeiler, 1997; Cullum,
2000). Let us assume that asexual forms produce twice the progeny and therefore their
colonization ability is twice the colonization ability, a, of sexual ones, and that asexual
individuals are not able to live and reproduce in the fraction g of places open to sexual ones.
Applying the model described by equation (2) to the dynamics of sexual (X) and asexual (Y)
populations yields the following set of equations:

ẋ = ax(1 − x − y) − dx (9a)

ẏ = 2ay(1 − g − x + gx − y) − dy (9b)

Note that the colonization ability 2a of asexual forms is twice the rate a of sexual ones.
Empty places that can be colonized are limited by the proportion g of places not available
for asexual individuals and the proportions x and y already occupied. The proportion x
of the established sexual individuals that limits available places is in turn reduced by g; that
is, the proportion gx of sexual forms that find places in the part of the habitat not available
for asexual forms (Fig. 1).

Fig. 1. The proportions of places unavailable (g) and available (1 − g) for asexual individuals (upper
part), and the proportions of places that are occupied by sexual individuals (x) and asexual indi-
viduals (y) or are empty (1 − x − y). As shown in the lower part of the figure, colonization by asexual
individuals is limited by the number of places occupied (x + y) and by the proportion g(1 − x) but not
by the proportion gx.
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The isoclines ẋ = 0 and ẏ = 0 are straight lines on the phase surface (Fig. 2) with co-
ordinates x and y. The isocline ẋ = 0 cuts both the x and y axes at kX = 1 − d/a. The isocline
ẏ = 0 cuts the x axis at 1 − d/[2a(1 − g)] and the y axis at kY = 1 − g − d/(2a). Asexual forms
are eliminated by the sexual ones if, at the x-axis, kX > 1 − d/[2a(1 − g)], which implies that

g > 1/2 (10)

Sexual form cannot be eliminated if, on the y-axis, kY > kX, which implies that

g > d/(2a) (11)

The proportion xE of sexual individuals at the point where the isoclines ẋ = 0 and ẏ = 0
intersect is given by

xE = 1 − d/(2ga) (12)

from which conditions (10) and (11) can also be derived.
The condition given by inequality (10) is very unlikely to be met, since it requires that

more than half of the habitat is not available for asexual individuals, while the entire
habitat is available for sexual ones. Condition (11) is less rigid and, if met without meeting
condition (10), it leads to co-existence. This requires very low mortality, d, of established
individuals and high colonization ability, a. Under such circumstances, the right-hand
side of inequality (10) can be low and, therefore, a small fraction of places available for
sexual but not for asexual individuals may allow for co-existence of both forms. Since large
differences in the size of habitats or ecological niches, as postulated by condition (10),
are unknown from empirical data, the tangled bank hypothesis as presented by this model
does not explain elimination of asexual by sexual reproduction.

Modification of this model for discrete time units, by applying the colonization
probability given by (1 − e−ax) instead of ax, does not allow for an analytical solution. Under

Fig. 2. Changes in the proportions x and y of places occupied by sexual and asexual individuals,
respectively, as described by equation (9). Two possible outcomes of competition are presented here:
the elimination of sexual individuals by asexual ones (left) and the co-existence of both forms (right).
See text for further explanation.
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very low numbers of immigrants per place, the discrete model does not differ from the
continuous one, while under very large numbers of immigrants, the probability of coloniza-
tion approaches unity. Assuming that (1 − e−ax) = 1, or in other words that in every time
unit each place is colonized, a modification for discrete time units will allow an anlaytical
solution. The probability that an individual which establishes itself comes from a given
population is proportional to the fraction of migrants from this population. Therefore, the
probability that a sexual individual establishes itself is ax/(ax + 2ay) = x/(x + 2y), while the
probability that an asexual one does is 2y/(x + 2y). Changes in the proportion of occupied
places, ∆x and ∆y, are therefore given by

xt + 1 = xt + (1 − xt − yt)xt/(xt + 2yt) − dxt (13a)

yt + 1 = yt + 2[1 − g − xt(1 − g) − yt]yt/(xt + 2yt) − dyt (13b)

The outcome of competition as described by these equations is similar to that described
by the continuous model (equations 9a, 9b). The sexual forms outcompete asexual ones
only if g > 1/2, which is identical to condition (10), and if

g > d/(1 + 2d) (14)

Inequality (14) replaces condition (11) in the discrete model, which allows for co-existence
when inequality (10) is not met. As in the former model, it is more likely to be fulfilled if the
death rate, d, of established individuals is very low.

DISCUSSION

The model presented above does not allow for the maintenance of sexuality through
the mechanisms postulated by the tangled bank hypothesis. This is because there are no
empirical data to show that niche width or the number of available places for sexual
individuals is double that of asexual ones. Nevertheless, co-existence of both forms is
possible theoretically, and this model formalizes analytically the arguments of the tangled
bank hypothesis. In an asexual population, if the death rate, d, is low in relation to the birth
rate and colonization ability, a, then almost all places available for asexual individuals are
occupied. Therefore, an extension of the habitat by a small proportion g, available for sexual
individuals only, gives them a chance to survive and co-exist. But if g is small, then the
proportion x of sexual individuals co-existing with asexual ones is also small. Co-existence
in sympatry of both sexual and asexual forms is a rare phenomenon. Of 106 insect species
reproducing without sex listed by Bell (1982), sympatric occurrence of both forms of repro-
duction is know for only six of them. There may be other reasons for this rare occurrence of
co-existence in spite of the predictions of the model presented here. If the size of the habitat
for sexual individuals is only slightly wider, the proportion of sexual individuals predicted
by the model is very small, and a very low density of partners for reproduction may not
allow for their persistence.

The model presented above, while very different from the numerical simulations of
the tangled bank hypothesis by Bell (1982), yields rather similar results: with a two-fold
advantage of a single clone, competition between sexual and asexual individuals cannot
eliminate the latter. Only after some additional complications introduced by Bell can
asexual reproduction be eliminated: a lower than two-fold cost of sex or the co-existence of
many clones and their stochastic extinction when they are very rare.
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Two models (Case and Taper, 1986; Doncaster et al., 2000), similar to that described here,
have claimed quite different results. Doncaster et al. (2000) stated that their model allows
asexual individuals to be outcompeted by sexual ones. Based on their own assumptions
and within the framework of their model, it is impossible to prove their claim that a sexual
population may drive out asexual invaders altogether. According to these authors, it is
possible if k1 > k2/α21, where k1 and k2 are states of equilibrium for single sexual and single
asexual populations respectively, and α21 is the inhibitory effect of a sexual population on
an asexual one and is assumed to be smaller than unity. By applying the definitions of all
these parameters as given in their paper, it is clear that elimination of asexual individuals
by sexual ones is possible only if the reproductive disadvantage of sexual individuals is
balanced with equally high mortality. West and Peters (2000) did not notice this mistake in
their critique of the paper by Doncaster et al. (2000).

Doncaster et al. (2000) also showed that the proportion of sexual individuals increases
with an increase in R0 (equal to the ratio a/d in my terminology) and they suggested that it
confers an advantage to sexual reproduction. This result, based on numerical calculations,
can also be seen in my equation (12), which shows that the proportion of sexual individuals
co-existing with asexual ones is an increasing function of the ratio a/d. Nevertheless, it does
not imply that asexual individuals can be eliminated by sexual ones, unless the size of the
habitat of the sexual forms is twice that of asexual ones.

Case and Taper (1986) suggested the elimination of asexual forms by sexual forms under
less rigid conditions than those proposed here. Their model is much more complicated than
mine, but with the similar assumption of the niche width of the sexual individuals being
larger than that of the asexual ones. Their numerical simulations allow for the sexual forms
to win the competition even if the standard deviation of their niche width is only 10%
higher than that of asexual forms. Some features of the model of Case and Taper (1986) are
very different from those of the model presented here. The shape of the niche is given by a
Gaussian distribution and the elimination of asexual individuals requires that the means of
the distribution are identical or almost identical for both sexual and asexual individuals.
The peaks for the density functions for both sexual and asexual niches are identical, which
implies that a wider niche contains more resources. The dynamics of the resources is deter-
mined by a logistic equation with additional mortality introduced by the asexual and sexual
consumers. A shortage of resources affects both the reproduction and mortality of these
consumers. While their reproduction is a linearly increasing function of the amount of
resources with no upper limit set by consumer physiology, their mortality is an exponen-
tially decreasing function of the resources.

In my model, one point may appear insignificant but it is of crucial importance for the
results obtained. Since the sexual individuals are able to use the fraction g of resources not
available to asexual ones, they do not compete with the asexual individuals for this fraction
of resources. This is introduced to the model by the term gx in equations (9b) and (13b).
This term shows that fraction g of the proportion x of sexual forms do not compete with
asexual ones (Fig. 2). When dropping this term from equation (9b), the condition (10)
for the elimination of the asexual individuals, namely that g > 1/2 changes to g > d /(2a), is
exactly the condition (11) for co-existence in the original model, with the term gx included.
In the same way, when dropping the term gx from equation (13b), condition (10) changes
into condition (14), g > d /(1 + 2d ), which is also the condition for co-existence in the
original model. The conditions for co-existence are much less rigid than the conditions for
the elimination of asexual individuals. If the death rate, d, of established individuals is low
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or low in relation to colonization abilities, and if the term gx is ignored, elimination of the
asexual forms is possible, even if the niche of the sexual ones is only a little bit wider, as in
the model of Case and Taper (1986).

Since the numerical model of Case and Taper (1986) is very complicated, it is difficult to
determine whether they included the phenomenon described by the term gx. Their equation
(7) suggests that they did not. For this reason, I doubt their conclusion that a small increase
in niche width may allow the elimination of asexual individuals by sexual ones. Two other
theoretical modes of the tangled bank hypothesis (Bell, 1982; Doncaster et al., 2000) do not
consider the sizes of habitats or the width of ecological niches explicitly, applying instead
a very abstract inhibitory effect, α, of one kind of individuals on another. Therefore, it is
impossible to determine whether the phenomenon described here by the term gx is of
importance in their model.

In conclusion, the co-existence of sexual and asexual individuals within the same
population, a rather rare phenomenon, can easily be explained by the models of inter-
specific competition. This is the case if the asexual forms are not able to use resources
available to sexual ones only or, as shown in many ecology textbooks, the inhibitory effects
of one population on another are smaller than unity. On the other hand, the complete
elimination of asexual individuals by sexual ones is not possible without the amount of
resources for the sexual population being twice that for the asexual one.
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